|
Главная | Контакты: Факс: 8 (495) 911-69-65 | ||
Образования макротрещинРазвитие отказа происходит путем образования магистральной трещины при ее раскрытии или за счет слияния групп трещин в очаге разрушения, а также за счет образования свищей при сквозном поражении стенки трубы (рис. 4) в том случае, когда длина трещины не превышает критическую. Последнее, очевидно, связано с отмеченным ниже локальным изменением физико-механических свойств металла трубы только в непосредственной близости от коррозионных трещин при сохранении пластичности стали вдали от них. Свищи характерны для трубопроводов, изготовленных из умеренно упрочненных сталей. стью, плавными очертаниями в вершине и, соответственно, меньшей вероятностью образования магистральной трещины. Более того, проведенным статистическим анализом аномальных наблюдений было обнаружено замедление процесса КР в грунтах с высокой степенью минерализации, способствующих язвенному разрушению металла с глубиной язв, соизмеримой с глубиной трещин. Такое замедление КР может быть объяснено тем, что за счет высокой химической активности этих грунтов превалирует электрохимический фактор, приводящий к растворению вершины трещины и ее затуплению. Трещина практически перестает расти в глубь металла, а развивается в основном язвенная коррозия. Развитие отказа происходит путем образования магистральной трещины при ее раскрытии или за счет слияния их групп в очаге Наиболее крупная магистральная трещина образовалась в результате слияния двух параллельных усталостных трещин, которые возникли у основания укороченных шлиц (см. рис. 13.31). При слиянии первоначальных трещин произошло отделение части шлица, а образовавшийся концентратор послужил очагом распространения магистральной трещины, которая и была выявлена в эксплуатации. Аналогичные случаи образования магистральной трещины имели место и ранее. В одном случае, распространение трещин произошло до критического размера, что привело к разрушению вала в полете и отделению винта, который в последующем не был найден. Запись параметров малоциклового нагружения осуществлялась вплоть до момента достижения образцом предельного состояния — образования магистральной трещины или накопления односторонней деформации. В некоторых опытах наблюдалась в процессе повторного нагружения потеря устойчивости трубчатым образцом. Интенсивное размытие дифракционных линий наблюдается на первой стадии деформирования отожженного материала, прирост ширины линии составляет около 85% общего размытия к концу испытаний. На вторую стадию приходится около 15% общего размытия. Это подтверждает положение о том, что пластическая деформация металла характеризуется плотностью дислокаций и протекает на первой стадии циклического деформирования. На второй стадии преобладает деструкционная деформация, которая не влияет на ширину линий, поэтому ее изменение протекает менее интенсивно. И наконец, на стадии образования магистральной трещины, которая не связана с дислокационным процессом, ширина линии остается постоянной. Исследование закономерностей структурныхГизменений поверхностного слоя стали 45, испытанной на модели фрикционного контакта в интервале контактных давлений crs •< qm < НВ, выявило периодический характер накопления пластической деформации. Такой характер зависимости свидетельствует о периодическом упрочнении и разрушении поверхностного слоя путем образования микротрещин. По мере роста числа воздействий индентора количество микротрещин увеличивается, приводя в дальнейшем к отделению частиц износа. Из полученных результатов следует, что разрушение происходит при небольшом (единицы и десятки) числе воздействий индентора в условиях малоцикловой усталости. Как уже отмечалось, при циклической деформации все стадии процесса разрушения (пластическая, пластически-деструкцион-ная и стадия образования магистральной трещины) наглядно проявляются при построении зависимости типа Р"!—б1/2 (см. рис. 16). При трении число воздействий индентора пропорционально суммарной деформации, поэтому изменение ширины дифракционных линий от числа воздействий индентора можно представить в координатах В1/г — га1/2 (рис. 46). Как и в условиях объемной малоцикловой усталости, при трении изменение ширины дифракционных линий носит трехстадийный характер. Участок АВ характеризует пластическую стадию процесса. На этой стадии происходит упрочнение материала, интенсивный рост микронапряжений и дробление блоков, в результате чего ширина линии (220) a-Fe увеличивается. Участок ВС — стадия пластически-деструкционная, вовремя которой возможно нарушение сплошности в отдельных микрообъемах, что замедляет рост ширины линии. Стадия CD — полностью деструкционная. На этой стадии в результате образования микротрещин происходит релаксация микронапряжений, уменьшение плотности дислокаций, а соответственно и ширины линии. В дальнейшем процесс упрочнения и разрушения периодически повторяется, однако чисто пластическая компонента (участок D Е} выражена уже не так сильно, как на начальном этапе деформирования, процесс развивается уже в наклепанном слое. Таким образом, и при трении, и при объемном циклическом деформирования наблюдается общий, трехстадийный характер изменения материала в процессе разрушения, однако в первом случае стадия образования магистральной трещины отсутствует. Это обусловлено тем, что при трении изменение и разрушение локализуются в тонком поверхностном слое, в микрообъемах, которые подвергаются непрерывному воздействию со стороны контртела. При объемном циклическом деформировании внешнее воздействие прикладывается ко всему образцу в целом, в этом случае возможно развитие разрушения за счет локализации его в более слабом сечении. Запись параметров малоциклового нагружения осуществлялась вплоть до момента достижения образцом предельного состояния — образования магистральной трещины или накопления односторонней деформации. В некоторых опытах наблюдалась в процессе повторного нагружения потеря устойчивости трубчатым образцом. § 10.3. Закономерности образования магистральной трещины в зависимости от топографии расположения инициаторов Закономерности образования магистральной трещины Точка перелома свидетельствует о начале образования макротрещин в ячейках связующего между волокнами, характеристики пластичности ty^, соответствующие моменту образования макротрещин. В общем случае можно полагать, что величины грйТ должны находиться в пределах между о/ь (равномерная деформация, соответствующая пределу прочности) и t/fc (деформация в шейке в момент разрушения). При отсутствии экспериментальных данных о величинах ipfcT в расчетах можно использовать величины tyb, зависящие от времени (такое предположение идет в запас прочности). Представленные выше данные позволяют проводить расчетную оценку разрушающих (по моменту образования макротрещин) амплитуд упругопластических деформаций ёа для заданной долговечности N0 и времени выдержки в цикле твр с учетом изменения во времени характеристик механических свойств, определяемых при кратковременном и длительном статическом нагружении. При этом применительно к режимам жесткого нагружения используется уравнение (14), а применительно к режимам мягкого нагружения — уравнение (15). Параметры этих уравнений зависят от температуры и времени цикла. Вводя в эти уравнения запасы по разрушающим амплитудам деформаций пе и числам циклов п^, как это сделано в [69J, в общем случае можно получить две системы из четырех уравнений для расчета допускаемых амплитуд деформаций и числа циклов При расчетах длительной прочности конструкций возникает необходимость в оценке долговечности не только в стадии окончательного разрушения, но и в стадии образования макротрещин. При испытаниях необходимо получить информацию о напряжениях и деформациях, соответствующих началу разрушения. Учитывая сложность экспериментального определения напряжений и деформаций, соответствующих образованию трещин при заданной долговечности т, целесообразно при постановке базовых опытов измерять поперечные деформации if>TT в зоне образования макротрещин на разрушившихся образцах (при этом деформация о;тт будет в пределах Точка перелома свидетельствует о начале образования макротрещин в ячейках связующего между волокнами, Применительно к наиболее ответственным конструкциям (атомные и химические реакторы, сосуды для транспортировки токсичных газов и жидкостей под давлением) выполнение пп. 1—5 осуществляется для стадии образования макротрещин. При этом указанные выше запасы по нагрузкам HQ, деформациям пе и долговечности rajy определяются по уравнениям типа (1.3) кривых малоциклового или длительного циклического разрушения, получаемых по критерию образования макротрещин. Однако опыт эксплуатации и испытаний большого числа элементов конструкций при малоцикловом нагружении показывает, что долговечность на стадии развития трещин сопоставима или в 2—5 раз превышает долговечность на стадии образования трещин. Это позволяет за счет уточнения расчетов прочности и ресурса по первой и второй стадии повреждения увеличить срок безопасной эксплуатации конструкций. — предельные состояния определяются моментом образования макротрещин; Уточнение расчетов длительной циклической прочности осуществляется на основе экспериментальных данных о характеристиках длительной прочности и пластичности, отвечающих моменту образования макротрещин, при этом длительная пластичность будет находиться в интервале между я>вт и озт. Кроме того, при Задачи сложного взаимодействия деталей высокоскоростных роторов, оценки точности результатов и выбор оптимальных форм конструкций позволяет решить сочетание методов фотоупругости, тензометрирования и численного расчета с применением ЭВМ [6, 7]. Вместе с этим получение экспериментальных данных о сопротивлении циклическому деформированию и разрушению роторных материалов позволяет выполнить уточненную оценку долговечности деталей роторов по стадии образования макротрещин. 6.2. Кривые усталости определяют при одноосном равномерном нагружении, кроме оговоренного в п. 6.3 исключения, по 50% вероятности образования макротрещин в соответствии с методикой испытания, приведенной в нормативных документах и ГОСТе. Эти уравнения входят как существенный составной элемент в условия накопления повреждений, формулируемых на базе силовых, энергетических и деформационных критериев разрушения. При этом, как указывалось ранее, преимущественное значение при расчетах прочности и долговечности имеют деформационные критерии разрушения, позволяющие наиболее полно учесть кинетику деформаций в зонах максимальной нагруженно-сти и изменение во времени характеристик пластичности. Деформационные критерии разрушения применимы для двух основных стадий повреждения — образования макротрещин и их развития до достижения неустойчивого критического состояния. ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |