Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Образование микротрещин



При этом аналитическая обработка позволила также помимо значения показателя П определить положение центра тяжести концентрационных кривых и площадь под ними. Положение центра, тяжести концентрационной кривой характеризует перемещение основной массы атомов на среднюю глубину, а площадь под кривой оценивает сушу перемещаемых радиоактивных атомов. Из представленных данных можно заключить, что картина распределение изотопа в зоне объемного взаимодействия при КСС и УСВ идентична. В результате проведенных исследований установлено, что при контактной стыковой сварке сопротивлением могут при определенных условиях (импульсный нагрев в сочетании с скоростями деформации превышающими 0,1 м/с) развиваться процессы аномального массопереноса существенно влияющего на формирование соединений. В частности образование металлических связей наблюдалось при величинах деформации, которые на порядок ниже чем при канонических режимах сварки сопротивлением. Количественные показатели массопереноса в данном случае весьма близки к аналогичным показателям при ударной сварке в вакууме.

Образование металлических соединений между атомами железа и атомами легирующих элементов вызывает изменения механических, физических и химических свойств.

При схватывании двух контактирующих поверхностей происходит образование металлических связей и объединение кристал*

[23]. Он показал, что образование металлических растворов, как правило, сопровождается увеличением твердости. Для непрерывного ряда твердых растворов концентрационная зависимость твердости описывается плавной кривой с максимумом около 50%. Из этого следует, что микротвердость данной фазы должна изменяться в соответствии с изменением ее состава.

В этом случае в результате большой скорости относительного перемещения трущихся поверхностей и больших удельных нагрузок происходит мгновенный нагрев и разупрочнение тончайших поверхностных слоев металлов, разрушение адсорбированных пленок, сближение ювенильных поверхностей и образование металлических связей — схватывание металлов.

Необходимо отметить, что образование металлических связей происходит как при динамических, так и при статических нагрузках. Однако при динамическом характере нагрузки начало

Очевидно, следует различать два совершенно раздельных этапа производства метал-локерамических материалов (изделий) — образование металлических порошков методами порошковой металлургии и изготовление металлокерамических изделий из металлических и неметаллических порошков методами метал локер амической технологии, т. е. имеется примерно такое же различие, какое существует, например, между металлургическим и литейным производством.

Способность металлов и их сочетаний (в паре) к схватыванию в ус ловиях трения без смазки или с недостаточной смазкой чрезвычайно важна для деталей машин, так как является основной причиной образования задиров и заедания и вызывает один из наиболее интенсивных видов изнашивания. Как известно, схватывание металлов представляет собой образование металлических связей и проявляется при совместном пластическом деформировании и при трении, которое, по существу, также является процессом совместного деформирования поверхностных неровностей и слоев металлов, находящихся в контакте.

»близостью внешних орбитальных диаметров, обусловливающих коллективизацию валентных электронов и образование металлических связей (образованию растворов внедрения способствует близость орбитальных диаметров бора, углерода, азота, кислорода к размеру междоузлий в решетке металла-растворителя)",

Электрический взрыв проволочек [15]. Уже давно было замечено, что при пропускании через относительно тонкие проволочки импульсов тока плотностью 104—106 А/мм2 происходит взрывное испарение металла с конденсацией его паров в виде частиц различной дисперсности. В зависимости от окружающей среды может происходить образование металлических частиц (инертные среды) или оксидных (нитридных) порошков (окислительные или азотные среды). Требуемый размер частиц и производительность процесса регулируются параметрами разрядного контура и диаметром используемой проволоки. Форма наночастиц преимущественно сферическая, распределение частиц по размерам нормально-логарифмическое, но достаточно широкое. Для наночастиц размером 50—100 нм таких металлов, как А1, Си, Fe и Ni производительность установки составляет 50 — 200 г/ч при энергозатратах до 25 — 50 кВт • ч/кг. Нанопорошки оксидов (А12О3, ТЮ2, ZrO2, MgAl2O4 и др.) также могут быть изготовлены, причем после се-диментационной обработки размер частиц может быть весьма малым (20 — 30 нм).

Второй этап характеризуется расплавлением металла и образованием ядра. По мере прохождения тока ядро увеличивается до максимальных размеров — по высоте и диаметру. При этом происходит перемешивание металла, удаление поверхностных пленок и образование металлических .связей в жидкой фазе. Продолжается процесс пластической деформации и тепловое расширение металла. К концу этого этапа отмечается почти полная осадка рельефа.

Высокочастотный электроискровой метод применяют при обработке деталей из твердых сплавов, так как он исключает структурные изменения и образование микротрещин в поверхностном слое материала обрабатываемой заготовки.

ной формы и др.). Таким образом, сопротивление деформированию носит устойчивый или неустойчивый характер. Устойчивое сопротивление деформированию обычно сопровождается с ростом внешней нагрузки (например, при нагружении монотонно возрастающей силой). Переход из устойчивого в неустойчивое состояние сопровождается снижением интенсивности роста или спадом внешней нагрузки и называется предельным состоянием, а параметры, соответствующие ему, - критическими (критическая сила, деформация, напряжение, энергия). Формы потери устойчивости сопротивления деформации разнообразны, например, переход металла из упругого в пластическое состояние, локализация деформаций (шейко-образование) при растяжении, потеря устойчивости первоначальной формы при действии напряжений сжатия и др. Разрушение нередко происходит при нормальных условиях эксплуатации конструкций, когда в целом металл испытывает макроупругие деформации. Такие разрушения, как правило, реализуются при наличии дефектов и конструктивных концентраторов. Последние вызывают локальные перенапряжения и образование микротрещин. Трещины в металле могут существовать и до эксплуатации конструкции, например, холодные и горячие трещины в сварном соединении. При рабочих нагрузках, вследствие действия временных факторов разрушения, происходит медленный, устойчивый рост исходных трещин и при определенных условиях наступает период неустойчивого (быстрого) распространения и окончательного разрушения. Определение критических параметров неустойчивости росту трещин является основной задачей механики разрушения. Критерии механики разрушения, как и феноменологические теории прочности, постулируются на основании какого-либо силового, деформационного или энергетического параметра R (рис.2.7). Условием неустойчивости тела с трещиной является (быстрое распространение трещины).

Далее кратко рассмотрим основные механизмы образования микротрещин, которые можно подразделить на дислокационные, диффузионные и в результате межзерен-ного сдвига. Дислокационные механизмы могут быть разделены на три группы. К первой группе относятся модели (Зинера, Стро, Коттерелла, Гилмана и др.), связывающие инициированные микротрещины со скоплением дислокаций в плоскостях скольжения. Эти скопления возникают в результате остановки движущихся дислокаций в различных барьерах, которыми являются границы зерен с большими углами разориентировки, включения, поля напряжений. Вторая группа моделей предполагает образование микротрещин в результате скопления дислокаций в окрестностях пересечения систем элементарных актов пластической деформации путем скольжения и двойнико-вания (модель Коттерелла). В соответствии с концепциями моделей третьей группы микротрещины инициируются в результате взаимодействия дефектов кристаллической решетки при пластическом деформировании. Эта группа -барьерные механизмы, описывающие процесс развития трещин в результате объединения цепочек вакансий в движущихся дислокациях со ступенькой; пересечение малоугловых границ; аннигиляции дислокаций в близко расположенных плоскостях скольжения; возникновения поля растягивающих напряжений от двух дислокационных скоплений противоположного знака.

рые служат причиной зарождения очагов микротрещин. Образование микротрещин облегчается сегрегацией примесей на границах зерен, снижающих их когезионную прочность (прочность сцепления).

образование микротрещин при пересечении двух систем скольжения

От предельного изгибающего момента Мпр, отвечающего развитому пластическому течению и неспособности соединения при этом воспринимать дальнейшую нагрузку, следует отличать предельный разрушающий момент М , при котором происходит нарушение сплошности материала (образование микротрещин и т. д.) вследствие исчерпания ресурса пластичности материала прослойки Л^ Так как ресурс пластичности является функцией показателя жесткости напряженного состояния П ( П = а0/Т— отношение шаровой части тензора напряжений к девиаторной /11/), с повышением уровня нормальных напряжений растяжения в прослойке повышается показатель жесткости напряженного состояния и падает ресурс пластичности мягкого металла Л . Уровень нормальных напряжений в прослойке возрастает с уменьшением ее относительной толщины ае, следовательно и предельный разрушающий момент Мр будет зависеть от геометрических параметров мягкой прослойки. Основные соотношения для его определения приве-деныв /12/.

От предельного изгибающего момента Мпр, отвечающего развитому пластическому течению и неспособности соединения при этом воспринимать дальнейшую нагрузку, следует отличать предельный разрушающий момент М_, при котором происходит нарушение сплошности материала (образование микротрещин и т. д.) вследствие исчерпания ресурса пластичности материала прослойки Л^. Так как ресурс пластичности является функцией показателя жесткости напряженного состояния П ( П = а0/Г— отношение шаровой части тензора напряжений к девиаторной /11/), с повышением уровня нормальных напряжений растяжения в прослойке повышается показатель жесткости напряженного состояния и падает ресурс пластичности мягкого металла Лр. Уровень нормальных напряжений в прослойке возрастает с уменьшением ее относительной толщины аг, следовательно и предельный разрушающий момент Мр будет зависеть от геометрических параметров мягкой прослойки. Основные соотношения для его определения приведены в /12/.

Рис. 15. Образование микротрещин на стыке деформированных и недеформированных зерен в а-сплаве Ti— 4,2 % Al; X600

Поверхность раздела в композитах подвержена наибольшему влиянию воды при усталостном разрушении. Романс, Сэндси и Коулинг провели широкое исследование усталостной прочности колец NOL (на основе эпоксидной смолы и S-стекла) в воде [65]. Некоторые из этих результатов приведены в табл. 4. При испытаниях кольца сжимались, причем максимальной деформации подвергались участки кольца, расположенные в плоскости, перпендикулярной направлению прикладываемого усилия. Показано, что разрушение начинается на участках максимального напряжения. На начальных стадиях в смоле происходит образование микротрещин, что в конечном итоге приводит к разрушению волокна. Статическое нагружение в воде оказывает значительно меньшее воздействие, чем динамическое. Так, при выдержке образцов в воде под постоянной нагрузкой в течение 16 мес. потеря прочности составляет менее 20%, а при циклическом нагружении те же кольца разрушаются полностью. Результаты исследований влияния воды на усталостное разрушение композитов можно найти в работах [30, 16].

к фронту трещины за счет поверхностной диффузии, но количественно описать этот поверхностный лоток пока не представляется возможным, так как еще неполностью изучена энергия процессов, связанных с адсорбцией воды на поверхности разрушения. 'Кроме того, не ясно, что происходит, когда вода достигает фронта трещины. Из микромеханики распространения трещины следует, что вершину трещины окружает деформированная область, но не установлено, происходит ли при этом упругая деформация, пластическая деформация или происходит образование микротрещин.

Механизм микроскопического разрушения можно представить следующим образом. В случае вязкого разрушения образование микротрещин подготавливается в процессе пластической деформации. Пластическая деформация приводит к зарождению очагов разрушения как за счет образования разного рода дефектов, способствующих разрыхлению металла (ослабление межатомных сил связей), так и за счет высоких внутренних напряжений, возникающих вследствие неоднородного протекания пластической деформации. Таким образом, пластическая деформация повышает возможность преодоления внутренних сил связей, существующих в твердом теле, нормальными напряжениями растяжения. В случае вязкого разрушения образование микротрещин подготавливается в процессе пластической деформации действием касательных напряжений. При значительных пластических деформациях силы сцепления на площадках скольжения из-за разрыхления материала снижаются и в предельном случае можно предположить, что разрушение есть результат действия касательных напряжений.




Рекомендуем ознакомиться:
Определяется диаметром
Определяется допускаемое
Определяется факторами
Определяется градиентом
Определяется химическим
Определяется интенсивностью
Определяется известным
Определяется кинетикой
Образующей поверхности
Определяет интенсивность
Определяет конструкцию
Определяет минимально
Определяет наименьший
Определяет особенности
Определяет поведение
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки