Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Однонаправленных профильных



Опыт применения пространственно-армированных материалов в целях тепловой защиты значительно расширил область их использования: используются не только теплозащитные, но и прочностные свойства материалов. Появилась новая область применения материалов, образованных системой трех нитей, — в супермаховиках. Применение современных композиционных материалов в супермаховиках представляет значительный интерес, так как максимальная удельная энергия, которая может быть накоплена в маховике, пропорциональна отношению прочности материала к плотности. Маховики, изготовленные намоткой из однонаправленных материалов, наряду с высокой прочностью в направлении армирования обладают традиционными

слоистых и однонаправленных материалов.

толщине образца значения характеристик, определяемых при испытаниях на изгиб, не остаются постоянными [29]. Для различных типов композиционных материалов зависимости этих характеристик от отношения llh образца имеют разный вид. Так, например, уменьшение отношения llh для слоистых и однонаправленных материалов приводит к снижению расчетных значений ах max. a Для пространственно-армированных — к некоторому их возрастанию. Практически все слоистые композиционные материалы в диапазоне отношений ///г = 4-ИО разрушаются от сдвига, а пространственно-армированные не имеют разрушения при сдвиге даже при llh = 2. Для этих материалов имеет место лишь локальное разрушение связующего в местах нагружения и разрушение арматуры в растянутой зоне.

1,6 раза ниже коэффициента армирева-ния однонаправленных материалов. Еще большее расхождение наблюдается в значениях прочности на отрыв в трансверсальном направлении. Прочность Кг однонаправленных углепластиков в 8 раз ниже прочности трехмерноармированных. Несколько меньше, по сравнению с углепластиками, различаются значения меж-слойной сдвиговой прочности и прочности на отрыв в трансверсальном направлении у трехмерноармированных и слоистых стеклопластиков.

Весь дальнейший анализ будет построен для линейно-упругих материалов или материалов с ломаной диаграммой деформирования. Такое предположение приемлемо для большинства однонаправленных материалов при кратковременном нагружении. Пластичность и вязкоупругость, свойственные некоторым связующим, благодаря превалирующей роли волокон в восприятии внешней нагрузки проявляются при нормальной температуре относительно слабо (см. рис. 5—8). Для анализа композиционных материалов можно использовать теории вязкоупругости и пластичности, однако для большинства инженерных приложений это приводит к применению численных методов. В то же время по теории упругости для большинства практических задач получают приемлемые результаты.

Исчерпывающий обзор теорий разрушения как для изотропных, так и для анизотропных материалов приведен в работе [16]*. Для однонаправленных материалов наибольшее распространение получили рассматриваемые ниже теории максимальных напряжений, максимальных деформаций и энергий формоизменения.

Принципиальную основу критериев прочности при расчете по максимальным нагрузкам, таких как В-критерии, изложенные в руководстве [1], составляет условие недопустимости повреждения или нарушения сплошности материала при расчетных напряжениях. Выбор соотношения между максимально допустимыми и предельными напряжениями для однонаправленных материалов определяется рядом факторов, обусловленных практикой расчета и проектирования. Прочность слоистого материала оценивается в результате применения критерия прочности последовательно ко всем слоям материала.

При малых частотах и амплитудах колебаний типовые значения коэффициента демпфирования для балок из однонаправленных материалов приведены в таблице:

На рис. 19 даны некоторые результаты, сравненные с результатами для стеклопластиков. Они обладают некоторыми особенностями. Заметно, что, чем выше статическая межслойная сдвиговая прочность, тем круче кривая S — 7V, т. е. тем больше эффект усталости. Межслойная сдвиговая прочность ортогонально армированных пластиков ниже прочности соответствующих однонаправленных материалов, а межслойная сдвиговая прочность композитов с волокнами типа II выше, чем у аналогичных композитов с волокнами типа I.

Регулирование анизотропии прочностных свойств в этих материалах связано со схемой армирования, являющейся также одним из важных технологических параметров. При ортогональной схеме укладки слоев армирующих волокон прочность (ах, ov) и модуль упругости (Ех, Еу) пропорциональны объемному содержанию волокон, расположенных в матрице в направлении растягивающих или сжимающих сил. При постоянном объемном содержании волокон изменение угла армирования однонаправленных материалов для уменьшения анизотропии прочностных свойств одновременно приводит к снижению прочностных свойств материала и в других направлениях.

Макромеханика композиционных материалов по ключевым характеристикам механических свойств, полученным при испытании на растяжение, сжатие и на сдвиг тонких плоских образцов однонаправленных материалов, позволяет рассчитать прочностные и упругие свойства композитов с перекрестным расположением слоев [3, 4]. Ключевыми свойствами являются упругие константы Е\\, ЕЮ, vi2, Gi2 и характеристики прочности сгц и сг22. В отдельных случаях необходимы характеристики пластичности ей, е22 и Ti2. Использованные обозначения ориентировок показаны на рис. 1.

Связующие для получения однонаправленных профильных изделий. Существуют два способа получения однонаправленных профильных изделий из армированных пластиков - "сухой" и "мокрый". При мокром методе формование проводят одновременно с пропиткой полимером армирующих волокон. При сухом - изделия получают путем их формования из препрегов.

Современные методы получения и переработки армированных пластиков получили развитие и применение в процессе разработки стеклопластиков. Для формования углепластиков используются аналогичные методы или их улучшенные варианты. В последнее время наблюдается тенденция к сочетанию в технологическом процессе нескольких методов переработки, которые ранее применялись по отдельности. Например, нередко метод намотки используют в комбинации с процессом получения однонаправленных профильных материалов1' волокнистого пластика. Рассмотрим несколько типичных методов переработки углепластиков.

Процесс получения однонаправленных профильных изделий. Основные стадии этого процесса, называемого также методом протяжки (или пултрузии): 1) пропитка связующим пучков волокон; 2) отжим избытка связующего; 3) придание материалу заданного сечения путем протягивания его через фильеру непрерывным или периодическим способом; 4) разрезка профильных изделий на элементы заданной длины. Такой процесс предельно прост, полностью автоматизирован и весьма перспективен для промышленного производства профильных изделий из армированных пластиков. Однако он имеет и недостатки, особенно сказывавшиеся в начальном периоде его разработки и освоения в промышленном производстве:

Рис. 3. 15. Основные элементы технологической линии для получения однонаправленных профильных изделий.

Процесс получения однонаправленных профильных изделий

- однонаправленных профильных изделий 58

----однонаправленных профильных изделий 93-94

Связующие для получения однонаправленных профильных изделий. Существуют два способа получения однонаправленных профильных изделий из армированных пластиков — "сухой" и "мокрый". При мокром методе формование проводят одновременно с пропиткой полимером армирующих волокон. При сухом - изделия получают путем их формования из препрегов.

Современные методы получения и переработки армированных пластиков получили развитие и применение в процессе разработки стеклопластиков. Для формования углепластиков используются аналогичные методы или их улучшенные варианты. В последнее время наблюдается тенденция к сочетанию в технологическом процессе нескольких методов переработки, которые ранее применялись по отдельности. Например, нередко метод намотки используют в комбинации с процессом получения однонаправленных профильных материалов1^ волокнистого пластика. Рассмотрим несколько типичных методов переработки углепластиков.

Процесс получения однонаправленных профильных изделий. Основные стадии этого процесса, называемого также методом протяжки (или пултрузии): 1) пропитка связующим пучков волокон; 2) отжим избытка связующего; 3) придание материалу заданного сечения путем протягивания его через фильеру непрерывным или периодическим способом; 4) разрезка профильных изделий на элементы заданной длины. Такой процесс предельно прост, полностью автоматизирован и весьма перспективен для промышленного производства профильных изделий из армированных пластиков. Однако он имеет и недостатки, особенно сказывавшиеся в начальном периоде его разработки и освоения в промышленном производстве:

Рис. 3. 15. Основные элементы технологической линии для получения однонаправленных профильных изделий.




Рекомендуем ознакомиться:
Одномерного стационарного
Образование микротрещин
Однонаправленных профильных
Однонаправленно армированных
Одноосное нагружение
Одноосного напряжения
Одноосном растяжении
Однорядный радиальный
Однорядных шариковых
Однорядной планетарной
Одноразового применения
Однородных элементов
Образование отложений
Однородными свойствами
Однородной деформации
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки