Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Охрупчивание материала



Приближение к указанной критической частоте (iff нагружения по мере ее возрастания сопровождается противоположными процессами по своему влиянию на рост трещин. С возрастанием частоты материал не успевает в полной мере релакси-ровать поступающую энергию к кончику трещины за счет процессов пластической деформации в связи с приближением к скорости движения дислокаций и избыток поступающей энергии будет релак-сирован за счет создания свободной поверхности квазихрупко. Движение трещины в момент ее скачкообразного подрастания в цикле нагружения не будет заторможено за счет пластической релаксации, и поэтому ее скорость будет близка к скорости распространения статической, хрупкой трещины при монотонном растяжении материала. Следует ожидать влияние на скорость роста трещины охрупчивания материала из-за резкого снижения возможности пластической релаксации поступающей энергии по мере нарастания частоты нагружения в две стадии. Первоначально возрастание частоты нагружения приводит к снижению размера зоны пластической деформации при прочих равных условиях, что и объясняет основной эффект ее влияния на снижение скорости роста трещины [1]. Результаты выполненных испытаний жаропрочного сплава In 718 на образцах толщиной 11 мм при нагреве до температуры 923 К и асимметрии цикла 0,1 приведены на рис. 7.1. Чередование частот приложения нагрузки приводит к тому, что взаимное влияние условий роста трещины при плоской деформации и плосконапряженном состоянии снижает скорость роста трещины при низкой частоте нагружения по сравнению с монотонным процессом неизменно низкочастотного нагружения.

Одновременно с процессом охрупчивания материала при возрастании частоты нагружения происходит изменение влияния окислительных процессов у кончика трещины на развитие разрушения при неизменном состоянии окружающей среды с точки зрения ее влажности и температуры. Проявляется это изменение через уменьшение доступа окружающей среды к вершине трещины. Возрастание частоты происходит в условиях снижения раскрытия трещины COD, что отражает возрастание циклического предела текучести материала в соответствии с условием

Применительно к Ti-сплавам влияние окружающей среды также выражено в увеличении СРТ [128-132]. Механизмы охрупчивания материала, связанные с проникновением водорода у вершины трещины, в большей степени аналогичны механизмам влияния окружающей среды на рост трещины в сталях. Особенно заметными они становятся в случае длительной выдержки материала под нагрузкой в условиях эксплуатации, что характерно для дисков компрессоров двигателей. Однако, как было показано в предыдущих разделах, необходимо учитывать чувствительность структуры материала по границам пластинчатой, глобулярной или моноструктуры после изготовления детали на выдержку его под нагрузкой, а уже затем давать оценку роли окружающей среды в кинетике трещин. Очевидно, что для структурно чувствительных к выдержке под нагрузкой Ti-сплавов роль окружающей среды в кинетике трещин может оказаться значительной. Применительно к сплавам, не чувствительным к выдержке под нагрузкой, рост трещин сопровождается формированием усталостных бороздок, которые наблюдают даже в вакууме [131].

шпилька М52, выполненная из стали 25Х1М1Ф1ТР, работавшая при температуре 540 °С, после 17 тыс. ч работы разрушилась. Напряжение затяга 300 МПа. Внутреннее давление пара 10 МПа, твердость шпильки 415 НВ. Структура материала шпильки — игольчатый сорбит отпуска. При специальном травлении выявлены границы первичных аустенитных зерен —индикатора теплового охрупчивания материала шпильки. Причиной разрушения явилось занижение температуры отпуска при термической обработке;

Ранее было показано [3], что при малоцикловом нагружении при температуре интенсивного деформационного старения (650° С) количество, размер и характер расположения частиц существенно зависят от условий деформирования. Характер выпадения новой фазы (карбидных частиц) определяется уровнем действующей нагрузки (деформации), временем нагружения и формой цикла, причем при заданном режиме нагружения (одно- и двухчастотное, программное и пр.) наблюдается сочетание времени и нагрузки, когда процессы старения вызывают хрупкое разрушение образца. Нагрузка ниже такого уровня приводит к тому, что время старения оказывается недостаточным для полного охрупчивания материала и излом имеет вязкий или смешанный характер. При малых нагрузках деформационное старение протекает медленнее и процессы выпадения частиц новой фазы определяются в основном временем нагружения. Чем ниже действующее напряжение, тем больше времени необходимо для возникновения хрупких состояний.

Таким образом, при циклическом упруго-пластическом деформировании аустенитной стали Х18Н10Т развитие процессов деформационного старения зависит от условий нагружения (температура испытания, уровень нагрузки и форма цикла). При испытании в условиях интенсивного деформационного старения (650° С) процессы упрочнения и охрупчивания материала связаны с образованием карбидной фазы (в основном карбида Ме2зС6), при других температурах нагружения (например, 450° С) процессы упрочнения и изменения пластичности материала могут быть связаны с формированием блочной структуры. При этом карбидообразование протекает менее интенсивно и существенно зависит от формы цикла (причем в отличие от испытаний при 650° С при 450° С наблюдается в данной стали преимущественно карбид МеС). Развитие карбидообразования и формирования блочной структуры в зависимости от уровня нагрузки при 450° С, так же как и при 650° С, может приводить к возникновению хрупких состояний, и излом при этом носит хрупкий характер. В связи с изложенным, наблюдающееся изменение циклических характеристик (ширина петли гистерезиса, односторонне накапливаемая деформация, предел текучести и др.) при температуре 650° С может быть связано в основном с развитием деформационного старения (выпадением карбидных частиц), а при 450° С — с формированием блочной («решетчатой») структуры.

Здесь: Эр — интенсивность пластических деформаций, отсчет которых ведется от наклепанного, а не от естественного первоначального изотропного состояния тела; Л—физическая константа материала, А — $Э\; Эт — предельное значение ЭР при разрушении путем чистого сдвига; Р — коэффициент внутреннего трения, сг = = (1/3) (
В критерий включены три константы: A, S и т; две из них не новы: А может быть связана с истинным удлинением при разрыве и сопротивлением на разрыв, a S — это аналог сопротивлению отрыву. Таким образом, предлагаемое обобщение достигается довольно экономными средствами. Единственная новая введенная константа — показатель охрупчивания материала в объемном напряженном состоянии т — необходима по существу. (Фактически т это параметр, позволяющий построить одну кривую, подходящую асимптотически к двум пересекающимся прямым; такая кривая должна быть гиперболой — А. Ф.) Потребность в ней ощущалась давно, так как хотя при оценке материалов много говорилось о влиянии объемности напряженного состояния на предельные пластические деформации, тем не менее никакой количественной меры этого качества до сих пор, насколько известно, предложено не было.

Концентрация напряжений снижается с повышением температуры вследствие увеличения пластичности и повышается при минусовых температурах вследствие охрупчивания материала.

кратковременной прочности. Величина и время образования максимума определяются температурой термообработки [25]. После термообработки вследствие увеличения и роста микродефектов структуры и охрупчивания материала значительно уменьшается удельная ударная работа.

Прохождение двух противоположно направленных процессов, один из которых затухает во времени, другой протекает непрерывно, обуславливает появление максимума на кривых зависимостей твердости, модуля упругости, кратковременной прочности. Значение и время образования максимума определяются температурой термообработки. После термообработки вследствие увеличения и роста микродефектов структуры и охрупчивания материала

В зоне зарождения и докритического роста трещины, вызвавшей лавинообразное разрушение теплообменника, обнаружены следующие недопустимые дефекты кольцевого шва: непровар в корне глубиной 1—3 мм на длине 205 мм, горячие трещины, пленочные шлаковые включения между корневым и первым заполняющим швом размером до 5x10 мм и глубиной до 1,5 мм. Очагом разрушения теплообменника явился непровар в корне шва. Развитию разрушения способствовали отмеченные дефекты шва и низкотемпературное охрупчивание материала обечайки при температуре минус Зб°С.

без пластической деформации. Поверхность или приповерхностные слои границ зерен являются главным местом сосредоточения различного рода неоднородностей в строении металлов и сплавов. К числу этих неоднородностей относятся и дефекты производства (при литье, при обработке давлением, при термообработке), способные в ряде случаев резко снизить зерногра-ничную прочность и вызвать охрупчивание материала (рис. 2.2). Возможно создание значительного уровня объемных остаточных напряжений, которые в совокупности с эксплуатационными нагрузками релаксируют путем создания первоначально зон хрупкого межзеренного растрескивания материала, предшествующих усталостной трещине (рис. 2.3). Концентрация выделений может быть ничтожно малой, так что поверхность разрушения не содержит никаких признаков гетерогенности, связанной с присутствием охрупчивающих примесей. Помимо того возможно разупрочнение приграничных объемов металла за счет "выгорания" основных элементов, например при наличии в материале поверхностных повреждений в виде прижогов. Возникающая межзеренная трещина характеризуется таким же состоянием поверхности границ в изломе (рис. 2.4), как и при малой концентрации охрупчивающих примесей. Механизм образования межзеренных трещин при наличии примесных выделений или, напротив, при выгорании основных элементов может быть следствием замедленного хрупкого разрушения [33, 34], а также может быть результатом кратковременной перегрузки материала и хрупким надрывом по приграничным зонам с пониженной вязкостью разрушения.

ставимой со скоростью движения дислокаций, произойдет максимальное охрупчивание материала и скорость роста трещины начнет возрастать до максимума.

Охрупчивание материала при возрастании частоты нагружения может возникнуть в условиях эксплуатации, например, применительно к лопаткам компрессора высоких ступеней газотурбинного двигателя. В условиях вынужденных колебаний от газодинамического потока имеющие место повреждения лопатки создают предпосылки возникновения резонансных явлений, когда при высоком уровне частоты нагружения в несколько тысяч герц могут иметь место возрастающие по уровню нагрузки от резонанса. Однако следует оговориться, что возрастание частоты нагружения, особенно при резонансе, сопровождается снижением амплитуды колебаний. Поэтому с возрастанием частоты нагружения трещина может распространиться на все сечение детали только в припороговой области ее скоростей.

В настоящее время разработаны новые высокопрочные сорта сталей, однако их широкому промышленному применению препятствует повышенная склонность этих материалов к корро-зионно-механическому (усталость и растрескивание) разрушению [41]. Сложилось мнение, что этап собственно развития трещин в подобных материалах состоит из двух подэтапов: чисто коррозионного медленного углубления трещины в материал вследствие растворения напряженного металла в ее вершине и более быстрого скачкообразного (дискретного) подрастания трещины. Считается, что на последнем подэтапе определяющую роль играет водородное охрупчивание материала. Наличие этих подэтапов подтверждается экспериментально [41].

оказывают примерно одинаковое влияние на охрупчивание материала в газообразном водороде и на индуцированное водородом КР. Имея целью создание общей картины водородных эффектов, мы попытаемся объяснить роль металлургических факторов на довольно общей основе. Как уже указывалось, ценность металлургических переменных состоит в доступности и удобстве методов их изменения в процессе разработки и совершенствования сплава.

диапазон частот нагружения (деформирования), позволяющий исследовать эффекты длительного нагружения (охрупчивание материала, ползучесть и т. п.) и кратковременное циклическое нагружение, при котором указанные временные эффекты еще не проявляются.

Таким образом, характер разупрочнения при отжиге, как и деформационного упрочнения при прокатке, монокристаллов молибдена является резко анизотропным. При одинаковой степени деформации и условиях обработки различно ориентированные монокристаллы молибдена могут разупрочняться либо в результате воз-врата и полигонизации, либо в результате рекристаллизации (при этом частично и полигонизации). Возникающая при отжиге полигональная структура весьма устойчива по отношению к термическому воздействию и сохраняется при длительных отжигах вблизи температуры плавления. Эта полигональная структура не является промежуточной стадией между структурами холодной деформации и рекристаллизации, а отвечает стабильному устойчивому состоянию. При этом наиболее важным является отсутствие высокоугловых границ зерен, с появлением которых связано рекристаллизационное охрупчивание материала и другие эффекты.

В цилиндрической части корпуса реактора наиболее опасно расположение дефектов вблизи внутренней поверхности, где имеет место радиационное охрупчивание материала в наибольшей степени, а аварийные режимы охлаждения приводят к существованию высоких растягивающих напряжений. На минимальной глубине расположен дефект № 3 в сварном шве № 4. Положительные результаты расчета безопасности такого дефекта позволяют не рассматривать дефекты № 1, 2 и 4 в сварных швах № 2, 3, 4, размеры которых сопоставимы с выбранным, но они расположены в более благоприятных по отношению к радиационному охрупчиванию местах.

диапазон частот нагружения (дефбрмирования), позволяющий исследовать эффекты длительного нагружения (охрупчивание материала, ползучесть и т. п.) и кратковременное циклическое нагружение, при котором указанные временные эффекты еще не проявляются.

диапазон частот нагружения (деформирования), позволяющий исследовать эффекты длительного нагружения (охрупчивание материала, ползучесть и т. п.) и кратковременное циклическое нагру-жение, при котором указанные временные эффекты еще не проявляются.




Рекомендуем ознакомиться:
Охлаждения перегретого
Охлаждения превращение
Охлаждения происходит
Охлаждения технологических
Охлаждения теплоносителя
Охлаждения уменьшается
Охлаждением охватываемой
Образованию мелкозернистой
Охлаждение нагревание
Охлаждение подшипников
Охлаждение происходит
Охлаждение способствует
Охлаждении поверхности
Охлаждении распадается
Охрупчиванию вследствие
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки