Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Особенности материала



Сварку можно выполнять непрерывно горящей или импульсной дугой. Импульсная дуга благодаря особенностям ее теплового воздействия позволяет уменьшить протяженность околошовной зоны и коробление свариваемых кромок, а также сваривать металл малой толщины при хорошем формировании шва. Особенности кристаллизации металла сварочной ванны при этом способе сварки способствуют дезориентации структуры, уменьшая вероятность образования горячих трещит!. Однако эта же особенность может способствовать образованию околошовных надрывов при сварке высоколегированных сталей. Для улучшения формирования корня шва используют поддув газа, а при сварке корневых швов на металле повышенных толщин — специальные расплавляющиеся вставки.

Кристаллизация металла сварочной ванны. При сварке плавлением сварочную ванну можно условно разделить на два участка: головной, где происходит плавление основного и дополнительного металлов, и хвостовой, где происходит затвердевание расплавленного металла. Переход металла сварочной ванны из жидкого состояния в твердое называют кристаллизацией. Отличительные особенности кристаллизации сварочной ванны:

ОСОБЕННОСТИ КРИСТАЛЛИЗАЦИИ ЧИСТЫХ МЕТАЛЛОВ И СПЛАВОВ

12.3. Особенности кристаллизации и формирования первичной структуры металла шва

жим сварки, так как в зависимости от химического состава стали, способа и режима ее сварки рассмотренные выше особенности кристаллизации, эффекты концентрационного переохлаждения могут быть разными.

12.3. Особенности кристаллизации и формирования первичной структуры металла шва............... 446

Рассмотрим особенности кристаллизации наплавленного металла в сварных соединениях аустенитных сталей, выполненных электродуговой сваркой [Л. 52].

Особенности кристаллизации серого чугуна, модифицированного ферросилицием, определялись дифференциальным термографическим анализом, обладающим высокой чувствительностью. Процесс кристаллизации чугуна изучали с помощью пирометра Курнакова. Силитовая печь для расплавления образцов состоит из металлического кожуха с внутренней теплоизоляцией. Образцы исходного чугуна диаметром 10 и высотой 60 мм вытачивались из стержней диаметром 16 мм, которые отливались в земляные формы. При температуре 1420 °С в рабочее пространство печи помещались кварцевые пробирки диаметром 14—16 мм с исследуемыми образцами чугуна. Пробирки закрывались огнеупорными пробками с отверстиями для центровки термопар. После расплавления образцов обе пробирки выдерживались 5 мин для выравнивания температур, вводились добавки, устанавливалась дифференциальная термопара, защищенная кварцевым наконечником диаметром 3 мм, отключалась печь и снимались кривые охлаждения. Записывали обычную кривую охлаждения чугуна, модифицированного ферросилицием, и дифференциальную кривую, которую получали, используя в качестве эталона образец немодифицированного чугуна. Для изучения влияния склонности исходного чугуна к переохлаждению на результат его модифицирования ферросилицием применялись сплавы с содержанием кремния 1,5 и 2,4%, а также предварительно добавлялись в сплав различные количества марганца от 0,5 до 1,5%.

Если компоненты А и В по строению электронных оболочек атомов, их радиусам и энергиям химических связей достаточно близки между собой и их замена друг другом не связана с затруднениями структурного и энергетического характера, то обычно возникают непрерывные твердые растворы (рис. 3.3.2). Над линией ликвидуса / лежит область расплава L, под линией солидуса s — область твердого раствора S, между ними — область кристаллизации. Рассмотрим особенности кристаллизации систем этого типа (рис. 3.3.2, а).

Сварку можно выполнять непрерывно горящей или импульсной дугой. Импульсная дуга благодаря особенностям ее теплового воздействия позволяет уменьшить протяженность околошовной зоны и коробление свариваемых кромок, а также сваривать металл малой толщины при хорошем формировании шва. Особенности кристаллизации металла сварочной ванны при этом способе сварки способствуют дезориентации структуры, уменьшая вероятность образования горячих трещин. Однако эта же особенность может способствовать образованию околошовных надрывов при сварке высоколегированных сталей. Для улучшения формирования корня шва используют поддув газа, а при сварке корневых швов на металле повышенных толщин - специальные расплавляющиеся вставки.

Рассмотрим особенности кристаллизации наплавленного металла в сварных соединениях аустенитных сталей, выполненных электродуговой сваркой.

При изготовлении поковок сечением 3000 мм и массой ^-240 т возникают условия, способствующие образованию в стали крупного зерна аустенита. К этвм условиям относятся особенности кристаллизации крупных слитков, трудности проведения горячей пластической деформации — длительные, многократные (до 14 раз) нагревы под ковку, достигающие 1250° С, неравномерная деформация по сечению поковки, вынужденный отказ (из-за технических трудностей) от операции осадки на слитках массой >300 т, а также малые скорости нагрева и охлаждения при перекристаллизации и продолжительные выдержки в процессе аусте-иитизации во время термической обработки (табл. 6).

Подавляющее большинство деталей машин, транспортных и других конструкций в процессе службы претерпевает воздействие циклически изменяющихся нагрузок. Поэтому примерно 90% -повреждений деталей связано с возникновением и развитием усталостных трещин. Трещины усталости создают предпосылки для хрупкого разрушения, и в этом одна из главных причин их опасности. Ни при каких других видах разрушения характеристики прочности не зависят от такого большого числа факторов, как при усталостном разрушении. Основными из них являются: особенности материала и технологии изготовления; конструкция деталей; режим нагружения; среда, контактирующая с деталью.

нием деформации на разных стадиях опыта и статистической оценкой коэффициентов выбранного уравнения, отражающих индивидуальные особенности материала.

где ёп— скорость ползучести в текущей точке кривой; Аг, U3, у3, и и г— коэффициенты, характеризующие индивидуальные особенности материала и закономерности процесса; Рит — коэффициенты, слабо зависящие от свойств материала и меняющие величину в небольшом диапазоне (т=1, 2, 3...; /*=0,1 или 2); а — истинное макронапряжение, отражающее условия приложения внешних нагрузок, если испытания на ползучесть проводят с постоянной нагрузкой (P=const) и использованием

При оценке прочности стали обычно пользуются нормативными величинами. Принимая во внимание существующее рассеяние характеристик жаропрочности и не имея возможности вероятностных оценок, используют коэффициент запаса. Например, для металла котельных агрегатов предложен коэффициент запаса, равный 1,5 [43]. При таком подходе не учитываются в достаточной мере индивидуальные особенности материала: в случае технологичного материала с высокой однородное-

Количественная оценка влияния вида напряженного состояния на сопротивление разрушению зависит от индивидуальных особенностей исследуемого материала. Следовательно, выражения критериев прочности по конструкции должны включать кроме характеристик напряженного состояния параметры, отражающие индивидуальные особенности материала в конкретных условиях испытания. Однако о долговечности материала при том или ином напряженном состоянии часто судят только по величине той или иной характеристики напряженного состояния без достаточного учета комплекса свойств материала. При этом, как правило, в качестве критерия длительной прочности используют одну из характеристик напряженного состояния. В одних исследованиях результатом анализа испытаний выявлена возможность использования в качестве критерия длительной прочности величины максимального нормального напряжения (
При анализе структуры уравнений критериев прочности подчеркивается, что в исследуемые зависимости необходимо вводить специальные параметры, отражающие индивидуальные особенности материала. Особую роль такие коэффициенты приобретают при больших сроках службы, когда в процессе длительного воздействия температуры и внешних нагрузок могут изменяться как свойства материала, так и механизм развития процессов деформирования и зарождения и роста повреждений. Поэтому, планируя программу испытаний для оценки конструктивной жаропрочности, следует выявлять границы температур-но-силовой области эксперимента, в которой сопротивление разрушению определяется физическими закономерностями, адекватными процессам, определяющим условия службы металла при длительной эксплуатации. В таких условиях обработка экспериментальных данных позволит получить правильные оценки коэффициентов как уравнении температурно-временной зависимости прочности, так и формул критериев длительной прочности.

где Np — число циклов — долговечность при термической усталости; Т — максимальная температура цикла, К; е— упруго-пластическая деформация цикла, %; г — время выдержки при максимальной температуре, мин; А, а, в, с, m, n, k — коэффициенты, отражающие индивидуальные особенности материала.

Инженерный анализ поведения композитов в общем случае представляет собой исследование, основанное на построении упрощенных моделей, учитывающих лишь основные аспекты поведения материала. Таким образом, делается попытка избежать чрезмерно подробного анализа, например не рассматривается точное распределение напряжений в объеме. В то же время учитывается структурная неоднородность композита, поскольку замена этого материала однородным анизотропным с точки зрения проблем разрушения не является адекватной. Поэтому создается расчетная модель материала, не требующая проведения сложного расчета напряженного состояния, но учитывающая в то же время наиболее существенные с точки зрения исследуемого поведения структурные особенности материала.

В ряде случаев невозможно выявить некоторые дефектные особенности материала из-за несовершенства применяемых методов металлографического и физического анализов, а иногда мы не всегда правильно оцениваем влияние ряда выявленных факторов на прочность материала в условиях эксплуатации. В связи с этим целесообразно применять методы механических испытаний, приближающиеся по условиям к условиям работы детали (испытания при сложнонапряженном состоянии, с переменным запасом упругой энергии, при различных скоростях нагружения и т. д.). Так, при наличии хрупкого эксплуатационного излома во многих случаях весьма показательными будут результаты оценки материала по его чувствительности к трещине [26].

Обработка Т. осуществляется на обычных металлорежущих и деревообрабатывающих станках так же, как и обработка многих металлов и древесины. При обра-боткз Т. необходимо учитывать специфичные особенности материала. Т. не обладает жесткостью металла, он упруг, поэтому допуски по размерам не могут быть слишком малыми.

При конструировании деталей должны быть также приняты во внимание специфические особенности материала заготовки. С этой точки зрения, например, в ряде случаев дополнительная механическая обработка может оказаться более целесообразной, чем дополнительная операция штамповки, требующая лишнего нагрева.




Рекомендуем ознакомиться:
Органического растворителя
Организаций промышленных
Определяется установкой
Организация разработавшая
Организация заработной
Организации испытаний
Организации обслуживания
Организации производственных
Организации ремонтного
Организации технологических
Организации выполнения
Организационной структуры
Организационно экономические
Определяется зависимостями
Организационно технологической
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки