Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Опреснительных установках



вый солнечный домик, который отапливается и обогревается водой, нагретой в солнечном коллекторе. Этот дом — образец для последующего строительства целых жилых поселков, отапливаемых Солнцем. . ,Не только у нас в стране занимаются проблемой использования солнечной энергии. В первую очередь заинтересовались гелиоэнергетикой ученые стран, расположенных в тропиках. В Индии разработана целая программа деятельности по использованию солнечной энергии. В Мадрасе действует первая в стране солнечная электростанция. В лабораториях индийских ученых работают экспериментальные опреснительные установки, зерносушилки и водяные насосы. В Делийском университете изготовлена холодильная гелиоустановка, способная охлаждать продукты до 15° ниже нуля. А в соседней Бирме студенты технологического института р Рангуне построили кухонную плиту, где солнечное тепло используется для приготовления пищи.

Комбинированное производство электроэнергии и опреснение морской воды. Большинство богатых нефтью арабских стран испытывает острую нехватку пресной воды; Б первую очередь это относится к странам Персидского залива. Во многих странах построены крупнейшие в мире установки, где пар используется одновременно для выработки электроэнергии и опреснения морской воды дистилляцией. Комбинированное производство электроэнергии и пресной воды обеспечивает экономию энергоресурсов и представляет собой экономически выгодный способ получения питьевой воды. Первая в мире опреснительная установка начала работать в Кувейте еще в 1953 г. Там же находятся и наиболее современные системы, большинство из которых •— многоступенчатые опреснительные установки мгновенного вскипания с поперечным расположением труб. Показатель использования греющего пара (отношение производительности установки по дистилляту к расходу пара от внешнего источника) равен приблизительно 8. Для предотвращения образования накипи в этих установках применяются главным образом полифосфаты; максимальная температура остающегося рассола 95°С.

Страны со средним уровнем обеспеченности водой — Иордания, Ливия, Бахрейн, Оман строят или уже построили у себя опреснительные установки.

Опреснительные установки: холодильная система, вентиляционные и воздушно-кондицио-верные установки Металлургическая промышленность

Эти процессы играют важную роль при использовании титановых сплавов в установках опреснения воды и в сверхзвуковых самолетах. Некоторые опреснительные установки сконструированы частично из титана или из малолегированных сплавов титана. Было показано, что добавки 0,2% Pd (а также никеля и молибдена) уменьшают тенденцию к щелевой коррозии [232]. Необходимо отметить, что эти малолегированные титановые сплавы не чувствительны к КР в водных средах. Полное разрушение не будет происходить по этому механизму. Для конструкции сверхзвуковых самолетов используют более высокопрочные сплавы, которые проявляют некоторую чувствительность к коррозионному растрескиванию, поэтому щелевая и Питтинговая коррозия могли привести к участкам зарождения трещин.

Конструкторы, проектировавшие опреснительные установки, часто применяли сплав 90—10 в таких узлах, где температурные и прочие условия были наиболее агрессивными. Не исключено, что при непосредственном сопоставлении в одинаковых условиях медноникелевый сплав и мышьяковистая алюминиевая латунь показали бы большее сходство коррозионного поведения, чем это следует из представленных здесь данных.

Особенности применения нержавеющих сталей в оборудовании, использующем морскую воду и различные солевые растворы, рассмотрены в работе [236]. Описаны условия эксплуатации, приводящие к коррозионному растрескиванию под напряжением различных типов нержавеющих сталей и разобрано 19 случаев разрушений в таких узлах и конструкциях, как бойлеры, паропроводы, конденсаторы для морской воды, кипятильники для разбавленной серной кислоты, дистилляторы, опреснительные установки.

Опреснительные установки, коррозия 109—113, 198—203 Органический слой 431 Патина 95

/ — реактор; 2 — теплообменник промежуточного натриевого контура; 3 — натриевый насос первого контура; 4 — регенеративный подогреватель; 5—питательный насос; 6 — деаэратор; 7 — подача добавочной воды для восполнения убыли; 8 — подача конденсата греющего пара опреснительной установки; 9 — натриевый насос промежуточного контура; 10 — противодавленческая паровая турбина; //— насос технологического конденсатора; 12 — подача пара на опреснительные установки; 13 — технологический конденсатор; 14 — РОУ к технологическому конденсатору; 15 — паропровод к турбине; If — пароперегреватель; 17 — испаритель;

После турбин пар при давлении 0,6 МПа поступает в мощные опреснительные установки по линии 12 с возвратом в деаэратор 6 конденсата этого пара по линии 8. В деаэратор из опреснительной установки направляют также добавочную воду 7 для восполнения убыли в системе станции. Из деаэратора питательный насос 5 через регенеративный подогреватель 4 подает конденсат в испарительные поверхности парогенератора 16. Об разевавшийся в них насыщенный пар перегревается в пароперегревателе 17.

Могут быть и многоступенчатые (по воздуху) замкнутые опреснительные установки. В них воздух движется навстречу опресняемой воде через ряд испарителей и конденсаторов.

Конденсация пара часто встречается на практике. В конденсаторах ,паровых турбин пар конденсируется на охлаждаемых трубах; конденсация пара осуществляется в опреснительных установках и многочисленных теплообменных аппаратах.

Значительную экономию топлива и определенные экономические преимущества могут обеспечить схемы использования тепла уходящих газов энергетических и технологических агрегатов для получения пресной воды. Одна из таких схем связана с утилизацией тепла отработавших газов газовых турбин для получения пресной воды в термических опреснительных установках (ТОУ), используемой для водоснабжения компрессорных станций магистральных газопроводов и объектов жилищно-культурного строительства, находящихся в районах минерализованных вод. Установка ТОУ состоит из следующих основных элементов: два утилизационных теплообменника газовой турбины типа ГТК.-Ю теплопро-изводительностью 9,6 ГДж/ч; испарители первой и второй ступени суммарной поверхностью нагрева 442 м2; два циркуляционных насоса испарителей; водо-подогреватель с поверхностью нагрева 23 м2; аппарат воздушного охлаждения типа АВЗ с поверхностью на-

При подготовке доработанного обзора вся новая информация была добавлена к основной части в виде дополнительной главы «Состояние исследований на 1977 г.» Расположение материала в новой главе повторяет структуру исходного обзора. Кроме того, добавлено несколько новых параграфов, посвященных коррозии крепежных деталей, конструкционных металлов с покрытиями, композиционных и некоторых других материалов, а также глава, обобщающая последний опыт применения различных металлов и сплавов в опреснительных установках.

В табл. 41—43 представлены результаты коррозионных испытаний, проведенных на опреснительных установках в Сан-Диего и Фрипорте [62]. Видно, что в случае обескислороженной морской воды меднонике-левые сплавы не обладают большим преимуществом в стойкости перед другими медными сплавами. Однако это преимущество конструкций, изготовленных из медноникелевых сплавов, будет проявляться в периоды отклонения от нормального режима работы. Данные, представленные на рис. 47, демонстрируют это небольшое, но устойчивое превосходство медноникелевых сплавов над адмиралтейской и алюминиевой латунью.

Ньютон и Брикет [67] провели осмотр трубчатых теплообменников на 55 многоступенчатых опреснительных установках с мгновенным вскипанием. В большинстве случаев разрушение трубок происходит путем перфорации стенок из-за питтинга со стороны морской воды. Некоторые разрушения были связаны с коррозией в дистилляте и объяснялись неполным удалением кислорода и двуокиси углерода. В подогревателях рассола и системах отвода конденсата н.а стенках труб часто обнаруживались водоросли и раковины, вызывающие струевую и кавитационную коррозию.

Поскольку титан и его сплавы являются очень перспективными материалами для применения в опреснительных установках (в контакте с горячей морской водой) и в химической промышленности (в оборудовании, работающем с горячими солевыми растворами), то важно установить, насколько возрастает склонность этих металлов к питтингу при повышенных температурах.

Фирмой «Westinghouse» были проведены электрохимические исследования и коррозионные испытания в эксплуатационных условиях ряда фер-ритных нержавеющих сталей, применяемых в опреснительных установках [233]. Результаты показали, что многие высокочистые нержавеющие стали обладают хорошей стойкостью в деаэрированной морской воде

Национальная лаборатория в Оук-Ридже опубликовала результаты исследований реакций и явлений переноса на поверхности, связанных с процессами в опреснительных установках [243]. Отдельно рассмотрены следующие вопросы: кинетика реакций и питтинговая коррозия титана в хлоридных растворах, питтинговая коррозия титана в солевых водах, кинетика начальной стадии щелевой коррозии титана.

Данные о коррозионном поведении алюминиевых сплавов на трех опреснительных установках опубликованы фирмой «Resources Conservation Company» [246]. Использован опыт эксплуатации опреснительной установки на Виргинских островах, концентратора рассола в Эль-Пасо (Техас) и небольшой установки в Розуэлле (Нью-Мехико). Большая часть оборудования на этих установках изготовлена из алюминиевых сплавов 3003, 6061 и 6063 и титана. В подкисленной воде с концентрацией растворенного кислорода 10—50 мкг/кг и температурой около 100 °С стойкость алюминия, как правило, была хорошей. Наиболее существенные исключения — сильная коррозия в насыщенной кислородом входной воде с рН 5—6 и температурой от 21 до 100 °С, а также сильный питтинг вследствие присутствия меди в одной загрузке воды. Первая проблема была решена путем замены труб на этом участке трубами из стеклопластика, а вторая — путем повышения рН до 7,5 и концентрации кислорода до 50 мкг/кг.

Обзор более 70 публикаций, посвященных либо коррозионным испытаниям алюминия в морской воде, либо практическому опыту использования алюминия в опреснительных установках, дан в работе Тейлора [247]. Имеющиеся данные показывают, что наиболее высокой стойкостью в морской воде обладают алюминиевые сплавы, содержащие 1—3 % Mg (например, сплав 5052). Важно избегать образования гальванических пар алюминия со сталью или сплавами на основе меди. Описаны методы уменьшения питтинговой коррозии с помощью входных фильтров и ловушек, задерживающих ионы тяжелых металлов. Прекрасная коррозионная стойкость, низкая стоимость и хорошая обрабатываемость делают алюминиевые сплавы наиболее удобным материалом для изготовления оборудования опреснительных установок.

Конденсация пара в опреснительных установках исключает присос естественных примесей в питательную воду парогенераторов, так как давление пара выше, чем испаряемой воды.




Рекомендуем ознакомиться:
Определению коэффициента
Определению надежности
Определению остаточного
Определяется сочетанием
Определению сопротивления
Определению вероятности
Определенные экспериментально
Определяется содержанием
Определенные параметры
Определенные промежутки
Определенные требования
Определенные зависимости
Определенных химических
Определенных концентрациях
Определенных ограничениях
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки