Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Органических полимеров



нриклс'.танис колеса (рис. 14.4) клеем типа '-нк/ксндпого, фенольного и других на ocnoise органических, полимерных смол. Предел прочности при сдвиге ок'-дипсний т .,- 1Н...20 \\lla;

Применяемые в машиностроении клеи делятся на две группы: клеи на основе органических полимерных смол типа-БФ (эпоксидные, полиэфирные, фенольные и др.) с теплостойкостью не выше 300 -... 350° С — первая группа, и клеи на основе кремнеоргани-ческих соединений и неорганических полимеров — вторая группа с теплостойкостью до 1 000° С, но с повышенной хрупкостью.

приклеивание колеса (рис. 14.4) клеем типа эпоксидного, фенольного и других на основе органических полимерных смол. Предел прочности при сдвиге соединений т,,—18...20 МПа;

ТИПЫ НАПОЛНИТЕЛЕЙ, ИСПОЛЬЗУЕМЫЕ В ОРГАНИЧЕСКИХ ПОЛИМЕРНЫХ

В реальных композитах, состоящих из органических полимерных матриц и гидрофильных минеральных наполнителей, полимеры в контакте с водой на поверхности раздела (слабый пограничный слой) обеспечивают необходимое сцепление матрицы с наполнителем. Поверхность раздела представляет собой не статический сандвич — полимер — вода — субстрат, а динамически равновесную систему возникающих и разрушающихся связей.

Для измерения критического поверхностного натяжения волокнистых материалов был предложен флотационный метод [67]. За критическую величину поверхностного натяжения волокна принималось поверхностное натяжение жидкости, по достижении которого происходило погружение волокна в жидкость, причем плотность волокна несколько превышала плотность флотационной жидкости. Значения ус органических полимерных волокон и волокон, покрытых полимерами, можно сравнивать с величиной ус, определенной с помощью метода Цисмаяа [113] (табл. 11). Интерпретация экспериментальных данных, полученных для волокон карбида кремния и :волокон бора с покрытием карбида кремния, вызывает некоторые затруднения, так как значения -ус. полученные двумя указанными методами, существенно различаются. Еще

В настоящем разделе рассматриваются преимущественно покрытия из органических (полимерных) материалов, так как они находят широкое применение в практике защиты от коррозии. Покрытия из неорганических материалов только кратко упоминаются.

Для осаждения с медью плохо смачиваемых органических полимерных частиц, например политетрафторэтилена, кроме ионов-стимуляторов в сульфатный электролит необходимо добавлять перфтор-2-этилгексилсуль-фонат калия [66]. Порошки сарана, найлона, ABC, перхлорвинила, полиэтилена, полястирена, поликарбоната,

Пластмассами (пластиками) называют искусственные материалы, получаемые на основе органических полимерных связующих веществ. Эти материалы способны при нагреве размягчаться, становиться пластичными, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего переход отформованной массы в твердое состояние совершается или при дальнейшем ее нагреве, или при последующем охлаждении.

ны в направлении оси волокна и свойства волокна (прочность, модуль упругости и др.) различны вдоль и поперек его. Чем выше степень ориентации макромолекул полимеров, тем выше прочность при растяжении вдоль волокон. Макромолекулы в жесткоцепных полимерах при высокой температуре сами стремятся сориентироваться в одном направлении, поэтому при изготовлении волокон из этих материалов используют стадию термообработки. Основная проблема достижения высоких характеристик волокон из гибкоцепных полимеров - добиться высоких степеней ориентации в процессе вытяжки и избежать разрывов макромолекул. Полиэтиленовые волокна могут иметь очень высокие прочность и модуль упругости при самой низкой плотности. Однако они имеют и недостатки - низкие рабочие температуры (до 100° С) и плохая адгезия к большинству полимерных матриц. Среди композитов этого типа можно также назвать органопластики (армированные пластики на основе органических полимерных волокон). В качестве армирующего наполнителя органопла-стиков применяют органические природные и синтетические волокна, нити, жгуты, ткани, трикотаж, холсты и др. Разработаны и применяются и другие волокна. Свойства различных волокон приведены в табл. 11.1, где для сравнения даны характеристики высокопрочного стального волокна.

стойкого и фрикционного назначения. Органопластики (армированные пластики на основе органических полимерных волокон) применяют в авиационной технике и ракетостроении для изготовления деталей, работающих под растягивающей нагрузкой, например, сосудов внутреннего давления, высокоскоростных маховиков. Органопластики применяют для внутренней и внешней отделки самолетов вместо стеклопластиков.

ПЛАСТИЧЕСКИЕ МАССЫ, ПЛЭСТ-массы, пластики,- материалы на осн. полимеров, способные приобретать заданную форму при нагревании под давлением и устойчиво сохранять её после охлаждения. Могут содержать наполнители, пластификаторы, стабилизаторы, пигменты и др. компоненты. В зависимости от характера превращений, происходящих с полимером при формовании, подразделяются на термопласты (важнейшие из них - П.м. на осн. полиэтилена, полипропилена, полистирола, поли-винилхлорида, полиамидов, поликарбонатов, политетрафторэтилена} и реактопласты (наиболее крупнотоннажный вид - фенопласты, используют также П.м. на осн. эпоксидных смол, полиэфирных смол, кремний-органических полимеров и др.). Осн. методы переработки термопластов -литьё под давлением, экструзия, вакуум- и пневмоформование; реакто-пластов - прессование и литьё под давлением. П.м.- важнейшие конструкц. материалы совр. техники, используемые во всех отраслях пром-сти, на ж.-д. и др. видах транспорта, в стр-ве, с. х-ве, медицине и быту.

На основании опытов последних лет установлено, что механизм трения органических полимеров (полиэтилен, перспенс, нейлон и др.) тот же, что и в металлах. Существенное различие между фрикционными свойствами полимеров и металлов обнаруживается в зависимости этих свойств от нагрузки.

Для органических полимеров, армированных минеральными волокнами, характерно сочетание полезных свойств пластиков и минералов. Такие композиты имеют сходство с пластиками по коррозионной стойкости, диэлектрическим свойствам, вязкости разрушения, низкой плотности и просты в изготовлении. В то же время они обладают жесткостью и прочностью минералов, использование которых в качестве наполнителей дает возможность существенно понизить стоимость изготовления композитов. Некоторые свойства рассматриваемых композитов значительно превосходят суммарные показатели свойств входящих в них компонентов. Так, например, энергия разрушения стекла составляет ~0,00068 кгс/мм, типичного пластика ~0,021 кге/мм, а композита на основе этих компонентов ~ 17 кгс/мм.

ликовал обзор работ, посвященных химии поверхности и поверхностной энергии, и проанализировал их с точки зрения проблемы адгезии. Он пришел к выводу, что хорошее смачивание субстрата жидкой смолой имеет первостепенное значение, так как плохое смачивание поверхности раздела приводит к образованию пор, которые служат концентраторам'и напряжений и способствуют образованию трещин. Благодаря физической адсорбции смолы на поверхности с высокой энергией при полном смачивании поверхности волокна прочность адгезионной связи может быть гораздо выше, чем когезионная прочность органических полимеров.

Хотя теория деформируемого слоя Оказалась непригодной для композитов, армированных стекловолокном, из-за чувствительности каучукоподобных 'полимеров на поверхности стекла к действию воды, тем не менее она оказывается полезной при рассмотрении связи между Жесткими полимерами и гидрофобным волокном, подобным графиту. Свойства композита, состоящего из графита и твердого полимера, ухудшаются в основном под действием термических напряжений, так как графит имеет очень низкий коэффициент* линейного теплового расширения. В данном случае невозможно гидролитическое равновесие на поверхности раздела, которое способствовало бы снятию напряжений по химическому механизму. В то же время благодаря наличию деформируемого слоя возможна механическая релаксация напряжений, так "как связь органических .полимеров с графитом не чувствительна к Воздействию воды.

6)общие вопросы адгезии органических полимеров к поверхности минеральных наполнителей.

В соответствии с ранними теориями адгезии в процессе получения композитов из гидрофильных минеральных веществ и органических полимеров необходим плотный контакт поверхности наполнителя с органической фазой. Отвержденная на поверхности смола должна противостоять различной усадке наполнителя и полимера и препятствовать прониканию воды внутрь гидрофильного наполнителя.

Радиационная стойкость присадок, повышающих вязкость и индекс вязкости. Использование органических полимеров, например полиоле-финов и полиметакрилатов, в качестве присадок для повышения индекса вязкости и вязкости смазок и гидравлических жидкостей при высоких температурах в последние годы становится общепринятым. К сожалению, такие присадки почти всегда более чувствительны к радиации, чем базовые жидкости, в которые их добавляют (см. гл. 2).

У всех рассмотренных нами полимеров общим является то, что молекулы их представляют собой длинные цепочки, построенные из элементарных звеньев. Такие полимеры называются линейными. В простейшем случае скелет у них составлен из атомов углерода. Однако в ряде случаев в состав .скелета могут входить и атомы других химических элементов — кислорода, азота, серы и др. Более того, скелет может вообще не содержать атомов углерода, как. это имеет место у кремний органических полимеров, например сило-

Для лакокрасочных покрытий, предназначенных для защиты металлов от коррозии в атмосферных условиях, важной характеристикой является паропроницаемость. По мнению ряда исследователей, проникновение влаги через полимерные материалы протекает по-разному: в одних существуют постоянные зазоры и поры, через которые в основном проникают молекулы воды, в других же зазоры возникают кратковременно в результате теплового движения макромолекул. Типичным представителем первого класса полимеров являются феноло-формальдегидные смолы, производные целлюлозы, полистирола, полиэтилена. Ко второму классу относятся полимеры типа кау-чуков, обладающие значительной упругостью. Влагопроницае-мость, а также влагопоглощение (водонабухание) находятся в сильной зависимости от структуры органических полимеров. При этом различают полимеры с трехмерной структурой и линейные. Полимеры с трехмерной структурой, например феноль-ные смолы, отличаются сильно разветвленной молекулярной структурой, вследствие чего молекулам водяного пара и воды приходится преодолевать большой путь. Поэтому влагопрони-цаемость фенольных смол относительно мала.

Исследование твердости образцов, закаленных по описанному режиму, показало (в соответствии с отметками Ь' и 3' на рис. 8,6), что глубина закаленного слоя равна 4 мм с переходным слоем 2,5 мм; т. е. исходная твердость образца в сердцевине сохранена, начиная с 6,5 мм от поверхности. Выбором закалочной жидкости (вода техническая умягченная, вода с добавками органических полимеров и т. п., водовоздушная смесь, масло) и способа ее подачи (душ, поток, сокойное состояние) можно в широких пределах регулировать скорость охлаждения поверхности. Тем самым можно изменить скорость охлаждения для предотвращения трещин в шлицах, пазах, отверстиях и выточках. Режим охлаждения имеет особенно важное значение при закалке легированных сталей. Закалка в масло не всегда удобна и небезопасна в пожарном отношении. Ярославским моторным заводом успешно введена в практику закалка водным раствором поли-акриламида ТУ6-01-1040—76 [3]. Известно также применение различных патентованных средств, таких, как аква-пласт (ГДР) османил (ФРГ).




Рекомендуем ознакомиться:
Определяется стойкостью
Определим соответствующие
Определить эффективные
Определить энтальпию
Определить амплитуды
Определить деформации
Определить допускаемые
Определить фактическую
Определить графическим
Определить исполнительные
Определить коэффициенты
Определяется суммарным
Определить локальные
Определить математическое
Определить начальные
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки