Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Процессов изнашивания



Теплоемкость металла ср при постоянной теплопроводности А. оказывает более сложное влияние на процесс распространения теплоты в полубесконечном теле. Изменение теплоемкости можно представить как одновременное действие двух процессов: изменения количества введенной теплоты и изменения скорости распространения теплоты. Запишем уравнение (6.2) иначе:

- возможностью проведения контроля процессов изменения свойств и напряженно-деформированного состояния материала объекта;

- возможностью проведения контроля процессов изменения свойств и напряженно-деформированного состояния материала объекта.

Графики апериодических процессов изменения параметра x(t) системы во времени: •«Уст - установившееся (предельное) значение параметра

2) Один из способов оперативного копирования в осн. чёрно-белых рукописных, печатных и др. штриховых материалов; см. Термокопирование. ТЕРМОДИНАМИКА - раздел физики, изучающий наиболее общие св-ва макроскопич. систем (тел и полей) на основе анализа возможных в этих системах превращений энергии без обращения к их микроскопич. строению. Осн. содержание Т.- рассмотрение общих св-в физ. систем в состоянии равновесия термодинамического, а также общих закономерностей процессов изменения состояния. Т. базируется на двух экспериментально установл. законах - началах!, (см. Первое начало термодинамики и Второе начало термодинамики], а также на теореме Нернста (см. Третье на-

При изучении процессов изменения состояния в термодинамике широко используется графический метод, основанный на применении ряда диаграмм. В одной из таких диаграмм по оси абсцисс откладывается удельный

Для использования первого закона термодинамики при исследовании процессов изменения состояния надо выразить его в математической форме. Пусть в цилиндре с подвижным поршнем находится 1 кг какого-либо газа. Если подвести к этому газу q единиц тепла, то в общем случае состояние газа изменится, а поршень перейдет в другое положение. Пусть внутренняя тепловая энергия вначале была «!, а в конце и2. Тогда изменение внутренней энергии в течение всего процесса составит:

Изучение процессов изменения состояния газа мы начнем с так называемых частных случаев изменения состояния. Это такие процессы, в которых на какую-нибудь величину наложено вполне определенное особое ограниче-

Из уравнения (в) заключаем, что ф однозначно для данного газа определяется значением т, т. е. ф наряду с т служит характеристикой политропного процесса, определяя долю тепла, пошедшего на изменение внутренней энергии. Пользуясь формулой (а) или (в), можно определить эту долю для каждого из процессов изменения состояния.

Показанное в предыдущем параграфе исследование процессов изменения состояния газа оказывается недостаточным для изучения процессов превращения тепловой энергии в механическую в тепловых двигателях. Для этого необходимо ввести еще одну характеристику (параметр) состояния газа. Однако предварительно нужно обратить внимание на одну особенность, касающуюся введенных параметров состояния. Из них четыре — давление, удельный объем (плотность), температура и внутренняя энергия — имеют простой физический смысл, легко объясняемый поведением громадного количества хаотически движущихся молекул, из которых состоят тела. Благодаря этому эти четыре параметра легко воспринимаются органами чувств человека и легко усваиваются при изучении. Кроме этих четырех параметров в термодинамике используется ряд таких параметров состояния, которые не обладают отмеченным выше свойством. Они вводятся чисто математическим путем и служат для облегчения технических расчетов. К числу таких параметров, как видно было, относится пятый из введенных параметров — энтальпия. Он не имеет какого-либо физического смысла и используется для вычисления ряда технически важных величин и, в частности, количества тепла в одном из важнейших процессов изменения состояния газов — изобарном. Для каждого состояния газа он вычисляется по формуле (2-27).

В большинстве рассмотренных нами процессов изменения состояния газа происходило преобразование тепловой энергии в механическую; однако ни один из ЭТИХ процессов, отдельно взятый, недостаточен для машины, удовлетворяющей практическим потребностям, так как, однократно совершив процесс, такая машина остановилась бы. Прак-

Физические модели процессов изнашивания материалов характеризуются качественным описанием физических и физико-химических процессов, развивающихся при фрикционном взаимодействии и приводящих к изменению структуры и свойств контактирующих материалов и их изнашиванию.

В то же время основной задачей теории изнашивания является установление критериев, с помощью которых можно было бы предсказать скорость (или интенсивность) изнашивания, наступление предельного состояния поверхностных слоев, переходы от одного вида изнашивания к другому. Наиболее общим и перспективным в исследовании и описании процессов изнашивания является термодинамический подход, в основе которого лежат законы сохранения энергии и принцип увеличения энтропии при необратимых процессах (первое и второе начала термодинамики). Целесообразность такого подхода также объясняется тем, что в основе современных теорий прочности твердых тел и строения вещества лежат энергетические концепции, а процесс трения всегда сопровождается диссипацией энергии. При этом совокупность происходящих физико-химических процессов, обусловливающая изменение структуры материала, энтропии трибосистемы и ее изнашивание (разрушение), может быть описана с помощью законов неравновесной термодинамики и термодинамических критериев (энерге-

Результатом многих процессов изнашивания являются частицы износа. Для их выделения из смазочного материала и классификации используют метод феррографии. Анализ частиц износа часто является важной частью триботехнических испытаний. Другими видами потерь при изнашивании, по которым следует приводить данные в случае их значимости, являются шум в узле трения, нагрев сопряжения, перенос материала, образование трещин, изменение цвета рабочих поверхностей, задиры на поверхности и изменения в се текстуре.

1. Природа и классификация процессов изнашивания

Следует отметить, что адгезионное схватывание относится к недопустимым видам и является следствием нарушения нормальной -эксплуатации машин или ошибок при подборе материалов. Стараются также избежать, процессов изнашивания, при которых возникает микрорезание, так как при этом значительно возрастает интенсивность процесса разрушения поверхностных слоев. Поэтому основные причины разрушения микрообъемов связаны с усталостными процессами. ;.

5. Классификация процессов изнашивания по скорости протекания элементарных актов разрушения. Рассматривая различные процессы изнашивания, можно сделать вывод, что интенсивность их протекания зависит от скорости процесса разрушения микрообъема материала при каждом элементарном акте взаимодействия пятен контакта (см, табл. 16).

Поверхностно-активные вещества оказывают двоякое действие на протекание процессов изнашивания. С одной стороны, их наличие в смазке интенсифицирует процесс разрушения поверхностных слоев за счет проявления эффекта П. А. Ребиндера (в том числе расклинивающего действия смазки в микротрещинах). С другой стороны, поверхностно-активные вещества до определенной их концентрации в смазке значительно снижают силы трения и в результате силовые нагрузки на микровыступы уменьшаются. Суммарное влияние поверхностно-активных веществ на скорость разрушения поверхностного слоя зависит от их количественного содержания в смазке и может как интенсифицировать, так и замедлять процесс усталостного изнашивания. Поэтому большое значение имеет применение специальных противоизносных присадок 126].

Экспериментальная оценка скорости изменения выходных параметров, как это было сказано выше, — наиболее достоверный в настоящее время путь для расчета надежности сложных систем. Однако это исследование должно сопровождаться теоретическим анализом основных зависимостей аналогично рассмотренной выше методике. В этом случае можно получить данные не только об изучаемом конкретном экземпляре изделия, но и сделать выводы о работоспособности рассматриваемых систем. Учитывая малую скорость протекания процессов изнашивания, испытание целесообразно дополнять математическим моделированием процесса, которое позволит оценить работоспособность изделия при различных условиях и режимах эксплуатации, а также проверить его работоспособность при применении материалов различной износостойкости.

1. Характеристики процессов старения и разрушения и определение соответствующей им степени повреждения изделия. Так, при испытании изучается протекание процессов изнашивания, коррозии деформации, усталостных разрушений, нагарообразования и других (см. гл. 2), которые являются основной причиной потери изделием работоспособности.

3. Прогнозирование надежности сложных систем. Это направление является ключевым для решения основных задач, связанных с оценкой надежности на стадии проектирования и наличия опытного образца машины. Для различных категорий машин необходимо дальнейшее развитие и воплощение идей о прогнозировании надежности на основе моделей отказов, которые базируются на закономерностях процессов повреждения (физики отказов) с учетом их вероятностной природы. Перспективным является использование методов статистического моделирования, когда учитываются вероятностные характеристики режимов и условий работы машины, внешних воздействий* и протекающих процессов старения. Особенно актуальны еще недостаточно разработанные методы прогнозирования надежности с учетом процессов изнашивания, которые являются основной причиной отказов многих машин. Особую проблему представляет изучение надежности комплексов «машина — автоматическая система управления», так как взаимодействие механических и электронных систем порождает ряд новых аспектов теории надежности.

1. Природа и классификация процессов изнашивания...... 229




Рекомендуем ознакомиться:
Пропорционально заработной
Пропорционален произведению
Пропускании электрического
Пропускают постоянный
Прорезиненные хлопчатобумажные
Простейшая конструкция
Процессах происходящих
Простейших геометрических
Простейшим вариантом
Пространства конденсатора
Пространства параметров
Пространственные колебания
Пространственные стержневые
Пространственных координат
Пространственных механизмов
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки