Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Процессов сопровождающих



При большой деформации в результате процессов скольжения зерна (кристаллиты) меняют свою форму. До деформации зерно

трещины при упруго] шастическом ее поведении [37] Для того, чтобы перейти к анализу разрушения при ползучести, необходимо рассмотреть механизм стадии повреждаемости при длительной высокотемпературной деформации. Как известно, повреждаемость при ползучести связана с порообразованием на границах зерен, инициируемом коллективными дислокационными процессами. Они так или иначе зависят от термически-активируемых процессов скольжения и переползания дислокаций с развитием диффузии по дислокационным трубкам или объемной диффузии. Экспериментальные данные, накопленные к настоящему времени, позволяют составить иерархическую последовательность I-»II->I1I->IV (рисунок 4.34) включения механизмов пластической деформации в зависимости от параметра ре, характеризующего эффективную энергию активации в терминах К.

Наоборот, понижение скорости испытания приводит к многочисленным межкристаллитным трещинам никеля технической чистоты при 1000°С и к хрупкому разрушению при 600 °С без существенной местной деформации. При 1000 °С и малой скорости растяжения (0,5 мм/ч) видимые следы скольжения в зернах отсутствуют, наблюдается межзерен-ная деформация; при скорости растяжения 280 мм/ч деформация по границам зерен частично подавляется вследствие интенсивного развития процессов скольжения в зернах в сочетании с рекристаллизацией деформированной структуры. Понижение скорости растяжения при 600 °С также приводит к уменьшению внутризеренного скольжения [1].

В нержавеющей стали режим Р+Н характеризуется активизацией роли процессов скольжения и развития разрушения материала при достижении температур 823 К. Переход в область температур 823-873 К сопровождался уменьшением размера ямок, что свидетельствовало о значительном уменьшении вязкости разрушения за счет частичного плавления эвтектики по границам зерен при (Р + Н) с последующим смешанным характером вязкого разрушения по прослойкам расплавленной эвтектики в приграничных зонах у основного материала (рис. 2.9). Скорость деформации при 1123 К приводит к увеличению доли участков излома, отвечающих процессу скольжения с отслаиванием материала по плоскостям скольжения в момент формирования свободной поверхности в сочетании с мелкоямочным рельефом. Температуре 1273 К соответствует смешанный рельеф разрушения путем форми-

зоны пластической деформации, как и в случае монотонного растяжения или сжатия. Разномас-штабность процессов деформации внутри этой зоны, иерархическая упорядоченность, эволюция в соответствии с принципами синергетики, присущая открытым системам, находящимся вдали от равновесия, — все это приводит к стадийности процесса формирования свободной поверхности внутри этой зоны. Процесс реализуется на разных масштабных уровнях и соответствует последовательно сначала доминированию процессов скольжения, а далее — процессам ротационной неустойчивости. Они развиваются таким образом, чтобы сумма поворотов для всех дефектов не приводила к нарушению сплошности материала. Это условие выполняется, когда сумма ротаций от всех дефектов равна нулю [25]. Когда сумма всех перемещений путем сдвигов не может быть компенсирована, из условия равенства указанной выше суммы нулю, происходит образование свободной поверхности.

Постепенное развитие усталостной трещины в металлах сопровождается последовательным усложнением процессов его эволюции у вершины трещины, что связано с некоторой последовательностью дискретных переходов через точки бифуркации в результате смены ведущих механизмов разрушения. Первоначально имеет место развитие разрушения с формированием элементов рельефа, отражающих доминирование процессов скольжения, что характеризуется типичными элементами псевдобороздчатого рельефа или строчечности (рис. 3.23). Далее при переходе через точку бифуркации ко второй стадии (II стадия) роста трещин происходит реализация процесса формирования

Распространение усталостных трещин, как было отмечено выше, происходит с участием всех трех мод раскрытия берегов трещины, однако процесс подрастания трещины на II стадии описывается на основе представлений о доминировании роли процессов скольжения в разрушении материала. Это относится

(см. рис. 3.23). Изменение условий раскрытия берегов трещины (преимущественно сдвиг на стадии I) после уменьшения ускорения роста трещины (преимущественно отрыв на стадии II) должно сопровождаться сменой ведущего механизма разрушения материала. Такая смена соответствует переходу от процессов скольжения к процессам ротационной неустойчивости. Вместе с тем малочисленные участки с усталостными бороздками можно наблюдать уже на стадии I при приближении к стадии П. Процесс формирования бороздок за-

Величина ее составляет 4,75-10~8 м, соответствует переходу от доминирующих процессов скольжения в разрушении материала к процессам ротационной неустойчивости деформации и разрушения при формировании свободной поверхности. При ее сопоставлении с зафиксированными минимальными величинами шага усталостных бороздок для сплавов на основе алюминия (см. табл. 3.1) выявлено удовлетворительное им соответствие. Близкая величина скорости роста усталостной трещины для алюминиевых сплавов была установлена в работе [121]. Граница перехода от стадии развития усталостной трещины I к стадии II соответствовала 5,1-Ю"8 м/цикл для термически не упрочненных сплавов и 4,58 • 10~8 м/цикл — для термически упрочненных сплавов.

Рис. 5.4. Последовательность (а) процессов скольжения у вершины усталостной трещины в цикле нагружения [135] и (б) схема (1) расположения мезотуннелей по отношению к выбранным осям координат с профилем усталостной трещины вдоль направления (2) "Z" и (3) "X" на поверхности образца [139]

к разрушению. В связи с затуплением вершины трещины происходит возрастание вязкости разрушения за счет протекания более интенсивных процессов скольжения.

При полном анализе трибологических процессов в числе выходных параметров ТС учитывается такой важный параметр, как коэффициент трения. Он является результатом комплекса физико-химических процессов, сопровождающих трение двух тел, поэтому его нельзя отнести к какой-либо одной детали, одному материалу. Аналогично нельзя отнести к одному элементу ТС характеристики износостойкости (скорость изнашивания, интенсивность изнашивания), так как они зависят от свойств всех элементов трибосистемы. Согласно современным положениям трибологии коэффициент трения и интенсивность изнашивания являются нелинейными функциями физико-механических свойств материалов пары трения, условий работы (вид смазки, свойства и температура окружающей среды) и режимов трения (скорость относительного движения, контактное давление).

Приведенный анализ различных теорий и гипотез, концепций и подходов к описанию процессов, сопровождающих трение и изнашивание материалов (твердых тел), позволяет сделать следующие выводы.

нарушения межатомных связей в предельно искаженной кристаллической решетке — равной Ьпл . В пользу указанной выше аналогии говорят также данные о связи процессов, сопровождающих пластическую деформацию и разрушение, с процессами плавления и о наличии корреляции между теплосодержанием металла в жидком состоянии, скрытой теплотой плавления и механическими 'Свойствами металлов при 0° К [25].

Описанные выше модели деформационного упрочнения основываются на каком-либо одном механизме накопления дислокаций. Кроме того, в каждой из них используются допущения, упрощающие сложную картину пластической деформации в реальных материалах. Сложность, многоуровневость и разнообразие процессов, сопровождающих деформационное упрочнение, затрудняют возможность создания общей физической теории упрочнения металлов и сплавов. При этом все оценки напряжения, необходимого для продвижения дислокаций через область, имеющую плотность дислокаций р, принимают вид формулы (3.1), а какой конкретный механизм из приведенных действует в том или ином случае, зависит от реальной дислокационной модели, структуры, типа материала и условий нагружения.

Настоящая статья представляет собой попытку авторов дать описание ряда процессов, сопровождающих пластическую деформацию, на базе уточненных физических основ статистической теории дислокаций.

Единое информационное пространство, понимаемое как информационная модель самого изделия, окружающей его среды и процессов, сопровождающих его создание и эксплуатацию, подразумевает однократный ввод данных, их хранение в стандартных форматах и стандартизованный электронный обмен информацией между всеми участниками проекта.

В условиях малоциклового нагружения старение протекает на фоне повторного деформирования за пределами упругости. Последнее обстоятельство определяет повышенную интенсивность процессов, сопровождающих остаривание, так что за времена порядка 5—10 мин в основном происходит снижение пластических свойств. В качестве примера в табл. 1 приведены данные о статической прочности и пластичности малоуглеродистой низколегированной стали при температуре 270° С, полученные при длительностях нагружения до разрушения в диапазоне 1,5— 105 мин. Можно отметить весьма слабую зависимость прочностных характеристик и особенно свойств пластичности от времени нагружения. Для подтверждения полученного результата проведены испытания той же стали при малоцикловом жестком нагружении при частотах нагружения порядка 1 и 0,1 цикла!мин.

Большое число диссипативных факторов, сложность и многообразие процессов, сопровождающих колебательные явления, приводят к тому, что при решении инженерных задач приходится прибегать к параметрам диссипации, полученным из эксперимента. В одних случаях экспериментом выявляются коэффициенты рассеяния отдельных элементов конструкции или сочленений, в других — некоторые приведенные значения, свойственные целому механизму, узлу и т. д. Параметры диссипации обычно определяются при моногармонических (т. е. одночастотных) колебаниях в режиме затухающих свободных колебаний либо в резонансном режиме при вынужденных колебанияхг. В первом случае мы имеем затухающий процесс (рис. 13), для которого коэффициент рассеяния может быть определен как

Анализ физико-технических процессов, сопровождающих пластическое деформирование металлов при горячей штамповке, позволяет сформулировать основные требования, которые должны быть учтены при конструировании штампуемых деталей для повышения их технологичности. Для сокращения механической обработки максимально возможное количество поверхностей штампованных деталей должно предусматриваться (при их конструировании) без последующей механической обработки. Допуски на изготовление штамповок из черных металлов на различных видах кузнечно-прессового оборудования устанавливаются ГОСТом 7505—55. Припуски и допуски на поковки общего назначения, изготовляемые свободной ковкой на молотах, из углеродистой и легированной стали при единичном и мелкосерийном производстве регламентированы ГОСТом 7829—70, а на поковки весом до 35 т, изготовляемые свободной ковкой на прессах — ГОСТом 7062—67. Как показывает практика, в конструкциях машин часто предусматриваются излишняя точность и шероховатость поверхности, требующие механической обработки, которая значительно усложняет и удорожает изготовление машины.

Детальное изучение в.с.х. горных пород /35/ и исследования физических процессов, сопровождающих электрический пробой жидкостей (в частности, воды) /5/, позволили аналитически описать требуемые в.с.х. Согласно /4/, в.с.х. горных пород для толщины образца 10 мм могут быть описаны выражением (1.9а), а для образцов различной толщины пробивное напряжение может быть определено из выражения (1.96) с коэффициентами т=п=ОА. Вольтсекундные характеристики дистиллированной воды могут быть описаны выражением (1.10). Для определения в.с.х. технической воды в диапазоне изменения удельного

О типах и направлениях физико-химических процессов, сопровождающих электроимпульсное измельчение, дают представление данные выполненных исследований на пульпах характерных мономинералов. В качестве рабочей жидкости использована дистиллированная вода однократной перегонки. Подготовка проб, химический, рентгенофазовый, хроматографический, минералогический анализы проводились по известным методикам.




Рекомендуем ознакомиться:
Пространственных положений
Пространственным механизмам
Пространственная структура
Пространственной конструкции
Пространственной структуре
Пространственное расположение
Пространственно армированные
Пространственно криволинейного
Пространственно временное
Пространстве изображений
Процессами изменения
Пространстве параметров
Пространство образованное
Пространство заполняется
Просвечиваемого материала
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки