Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Производства синтетических



В послевоенные годы были освоены отечественные высокоэффективные угле- и силикотермические способы производства силикокальция и ряда сплавов иа их основе [8]. Было повышено качество ферросплавов как по химическому (повышено содержание ведущих элементов, снижено содержание вредных примесей), так и по гранулометрическому составу, организовано производство фракционированных и порошкообразных сплавов. Одновременно происходило усовершенствование алюми-иотермического процесса за счет предварительного нагрева шихты, применения осадителей, использования электроэнергии для предварительного расплавления шихты и т. д., а также значительного расширения сортамента выплавляемых сплавов [9; 10, с. 27—38; 11, 12]. Совершенствовалась техника ферросплавного производства. Для восстановительных процессов начали широко использовать печи с вращением ванны и закрытые, печи с вращением и наклоном ванны для рафинировочных процессов, а также вакуумные печи сопротивления, индукционные вакуумные и др. [13—15]. Мощность ферросплавных печей превысила 100 МВД, что значительно улучшило технико-экономические показатели производства. Ниже приведены данные, характеризующие изменение

В качестве шлакообразующей присадки в ферросплавной промышленности используют известь, плавиковый шпат, реже — кварцит, бокситы и высокосортные железные руды. Известь должна содержать >90 % СаО, <3 % SiO2, <3% MgO и минимальное количество углерода и фосфора. Лучшей по качеству является известь, полученная обжигом во вращающихся трубчатых печах, однако для производства силикокальция необходимо использовать крупнокусковую известь, полученную в шахтных печах и содержащую >94 % СаО. Плавиковый шпат по ГОСТ 7618—70 должен содержать >65 % CaF2 и <30 % SiO2, а лучшие сорта >92 % CaF2 и ^5 % SiO2. Иногда используют флюорито-

Вследствие высокой вязкости шлак частично остается в печи и вызывает зарастание ванны, при этом снижается производительность печи, увеличивается удельный расход электроэнергии и сокращается продолжительность кампании. В связи с этим необходимо полностью удалять из печи образовавшийся шлак, что достигается при глубокой и устойчивой посадке электродов и достаточном количестве восстановителя в шихте. Полному удалению шлака способст-вУег вращение ванны печи, обеспечивающее разрушение карбидов и равномерный прогрев подины печи [14]. В некоторых случаях при скоплении шлака его удаляют при по-Мощи извести, задаваемой в печь. Хорошие результаты да-ет введение в печь отходов от производства силикокальция, содержащих сплав, карбиды кальция и кремния и оксид Кальция. Однако введение флюсующих приводит к увели-

Шихта для углеродотермического производства силикокальция состоит из кварцита, извести, коксика, древесного и каменного угля. Требования к кварциту и восстановителю, используемым при производстве силикокальция, аналогичны предъявляемым при производстве ферросилиция (см. гл. 2). Крупность материалов для плавки должна быть следующей: кварцита 50—100 мм, коксика 5—20 мм, древесного угля 8—100 мм, каменный уголь должен быть в куске <60 мм и отсеян от мелочи <10 мм; известь из шахтных печей должна быть крупностью 40—100 мм. Известь должна быть свежеобожженной и содержать не менее 94 % СаО. Плохо обожженная известь резко повышает расход электроэнергии и восстановителя, снижает производительность печи, производит к расстройству хода ее и к уменьшению продолжительности кампании. Примерный химический состав известняков используемых для получения извести приведен в табл. 28.

В зарубежной практике производства силикокальция исходным материалом часто является технический карбид кальция, имеющий примерно следующий состав: 78 % CaCz, 17 % СаО и 5 % примесей MgO, Fe2O3, A12O3, SiO2 и др. Получают его плавкой в мощных (до 100 MB А) электропечах из извести и углеродистого восстановителя при расходе электроэнергии 9000 МДж/т (~2500 кВт-ч/т).

Рис. 20. Технологическая схема углеродотермнческого производства силикокальция:

брикетированной шихты, более дешевого и недефицитного сырья, что способствует повышению извлечения кальция и кремния на 6,8—14,7% [82]. Промышленные плавки на ЧЭМК в 1982 г. также показали наличие больших резервов этого способа производства силикокальция марок СКЮ иСК15.

получения марганцевых ферросплавов 158, 183 производства низкоуглероднсто-го феррохрома 233 сшшкотермнческого производства силикокальция 121 углеродотермического производства силикокальцня 116

В послевоенные годы были освоены отечественные высокоэффективные угле- и силикотермические способы производства силикокальция и ряда сплавов иа их основе [8]. Было повышено качество ферросплавов как по химическому (повышено содержание ведущих элементов, снижено содержание вредных примесей), так и по гранулометрическому составу, организовано производство фракционированных и порошкообразных сплавов. Одновременно происходило усовершенствование алюми-иотермического процесса за счет предварительного нагрева шихты, применения осадителей, использования электроэнергии для предварительного расплавления шихты и т. д., а также значительного расширения сортамента выплавляемых сплавов [9; 10, с. 27—38; 11, 12]. Совершенствовалась техника ферросплавного производства. Для восстановительных процессов начали широко использовать печи с вращением ванны и закрытые, печи с вращением и наклоном ванны для рафинировочных процессов, а также вакуумные печи сопротивления, индукционные ва-шпМНЫе И ДР' t^—-15]. Мощность ферросплавных печей превысила 100 МВД, что значительно улучшило технико-экономические показатели производства. Ниже приведены данные, характеризующие изменение

В качестве шлакообразующей присадки в ферросплавной промышленности используют известь, плавиковый шпат, реже — кварцит, бокситы и высокосортные железные руды. Известь должна содержать >90 % СаО, <3 % SiO2) <3% MgO и минимальное количество углерода и фосфора. Лучшей по качеству является известь, полученная обжигом во вращающихся трубчатых печах, однако для производства силикокальция необходимо использовать крупнокусковую известь, полученную в шахтных печах и содержащую >94 % СаО. Плавиковый шпат по ГОСТ 7618—70 должен содержать >65 % CaF2 и <30 % SiO2, а лучшие сорта >92 % CaF2 и ^5 % SiO2. Иногда используют флюорито-

Вследствие высокой вязкости шлак частично остается в печи и вызывает зарастание ванны, при этом снижается производительность печи, увеличивается удельный расход электроэнергии и сокращается продолжительность кампании. В связи с этим необходимо полностью удалять из печи образовавшийся шлак, что достигается при глубокой и устойчивой посадке электродов и достаточном количестве восстановителя в шихте. Полному удалению шлака способст-вУег вращение ванны печи, обеспечивающее разрушение карбидов и равномерный прогрев подины нечи [14]. В некоторых случаях при скоплении шлака его удаляют при по-Мощи извести, задаваемой в печь. Хорошие результаты да-ет введение в печь отходов от производства силикокальция, с°держащих сплав, карбиды кальция и кремния и оксид Кальция. Однако введение флюсующих приводит к увели-

Для производства синтетических неметаллических материалов (пластмассы, стеклопластики, стекловолокно и т. д.), удобрений, а также других химических продуктов аппаратуры, установки и машины работают в агрессивных кислотных средах, чаще в серной, соляной, азотной или фосфорной кислотах и: их смесях разной концентрации и при разных температурах.

синтетических масел «Белойл» -1985 комбинированная установка производства,

обеспечение роста ресурсов моторных топлив прежде всего за счет увеличения объема и глубины переработки нефти, при одновременном существенном сокращении расхода мазута электростанциями, а также путем широкого использования в качестве моторных топлив сжатого и сжиженного природного газа и организации по мере решения научно-технических проблем производства синтетических моторных топлив из газа, угля и горючих сланцев;

Самыми распространенными растворами для предпусковой и эксплуатационной очистки котлов от оксидных отложений следует считать 3—5%-ные растворы соляной кислоты, 2—3%-ные растворы моноцитрата аммония и композиции на основе трилона Б с органическими кислотами с суммарной концентрацией 10—20 г/кг. Из этих растворов чаще всего применяются растворы соляной кислоты как наиболее доступные и дешевые. Однако растворы соляной кислоты не рекомендуется применять при очистке аустенитных сталей, ла-туней и некоторых других сплавов. Доступными и дешевыми являются также растворы технических смесей органических низкомолекулярных кислот [78; 112; 174]. В смеси с трилоном Б технические органические кислоты хорошо растворяют оксиды и получают все большее распространение. Технические кислоты являются отходами производства синтетических жирных кислот. Они представляют собой 15—20%-ный водный раствор смеси органических кислот: муравьиной, уксусной, пропионовой, валериановой, масляной с небольшой примесью кетонов и альдегидов (до 4%). Эта смесь получила название В К (водный конденсат) и может отпускаться нефтехимическими предприятиями по достаточно низкой цене (10— 50 р. за 1 т) в зависимости от степени очистки. Неочищенный ВК содержит в качестве примеси нерастворимые в воде жидкие продукты, так называемую масляную фазу, что препятствует применению ВК для очистки котлов. Ее, однако, можно легко отделить от основного раствора на нефтехимических предприятиях методом отстоя.

Прогресс в области технологии производства синтетических волокон с модифицированными свойствами достиг такого уровня, при котором оказалось возможным получение армирующих материалов, способных конкурировать с неорганическими волокнами.

Резюмируя все сказанное о битуме, еще раз подчеркнем, что на его основе можно создавать отличные противокоррозионные материалы и что, несмотря на развитие производства синтетических полимеров, битум останется одним из важнейших пленкообразователей для красок.

Наиболее распространенным методом получения теплоты является в настоящее время сжигание углеводородных топлив, прежде всего угля, нефтепродуктов и природного газа. Как известно, легкодоступные запасы двух последних видов органического топлива вскоре начнут истощаться, если только этот момент уже не наступил. Наша энергетика сильнейшим образом зависит от нефти и газа, поэтому необходимо предусмотреть возможность покрытия разницы, которая в перспективе может образоваться между снабжением и потребностью в таких энергоресурсах, путем организации производства синтетических углеводородов. Для условий США это в первую очередь относится к природному газу, поскольку в этой стране его добыча з течение последних 5 лет непрерывно снижалась и начала увеличиваться лишь после того, как был отменен контроль над ценами на газ.

Организация промышленного производства синтетических топлив. Промышленность по производству синтетических топлив, когда она будет создана, будет предназначена преимущественно для выпуска жидких и газообразных топлив для неэлектроэнергетического сектора национального энергохозяйства. Интерес электроэнергетической отрасли к синтетическим топливам определяется необходимостью найти приемлемое топливо для существующих газомазутных ТЭС и новых недорогих энергоблоков, предназначенных для работы в пиковом и полупиковом режимах. По оценке потребность в этих видах топлива для электроэнергетики США на уровне 2000 г. составит 75 млн. т в год и для крупных котельных — еще 50 млн. т в год. Суммарная потребность, таким образом, составит 125 млн. т в год.

В заключение приведем цитату из доклада Комитета по ядерной и альтернативным источникам энергии, в которой обобщены необходимые шаги по использованию всех возможностей для наилучшего решения проблем энергоснабжения: «Наиболее важной мерой на среднесуточную перспективу является развитие производства синтетических топлив из . угля и, возможно, нефтеносных сланцев с целью их использования в тех секторах экономики, где прямая замена нефти и природного газа углем и атомной энергией (которые в настоящее время наиболее удобны для производства электроэнергии) невозможная, например на транспорте. Вероятно, не менее важно расширение использования угля и атомной энергии в целях развития электроотопления, где указанное замещение возможно1.

Ингибиторы коррозии позволяют использовать для защиты металлов от коррозии такое дешевое сырье, как кубовые остатки (кислоты состава С2о и выше), которые образуются в процессе производства синтетических жирных кислот методом окисления парафина. Кубовые остатки повышают защитные свойства покрытий на основе полимеризационных смол. Кроме того, их можно применять самостоятельно: при нейтрализации и мо-

Для технологических процессов производства синтетических каучуков и синтетического спирта характерно более высокое долевое участие тепловых ВЭР в покрытии суммарной тепловой нагрузки предприятий по сравнению с предприятиями нефтеперерабатывающей промышленности. В настоящее время для заводов синтетического каучука выработка тепла за счет ВЭР составляет около 14% .общего теплопотребления подотрасли в целом. Спиртовые же заводы за счет пара утилизационных установок покрывают свою потребность в тепловой энергии примерно на 45%. В то же время не на всех заводах полезно используются тепловые ВЭР для покрытия технологической и отопительно-вентиляционной нагрузки предприятий. Например, потребность в тепловой энергии на Куйбышевском заводе синтетического спирта в настоящее время покрывается за счет ВЭР до 21%, на Уфимском заводе — до 24%. Однако на Орском заводе синтетического спирта тепловые ВЭР вообще не используются и тепловая нагрузка завода полностью покрывается за счет выработки тепла в энергетических установках, использующих минеральное топливо. Следует отметить, что наряду с рационализацией теплового хозяйства промышленных предприятий с целью вовлечения в тепловой баланс ВЭР, утилизация которых в настоящее время технически решена, значительно повысить долю ВЭР в покрытии тепловой потребности производства этилена и синтетического спирта может решение проблемы утилизации пирогаза для выработки тепловой энергии. Что же касается сажевых заводов, то они потребляют сравнительно небольшое количество тепловой энергии, в связи с чем при утилизации сажевых газов в котлах необходимо вырабатывать пар энергетических параметров, который может быть использован в турбогенераторах для выработки электроэнергии.




Рекомендуем ознакомиться:
Проектных документов
Прочности рассмотрим
Проектными организациями
Проектной мощностью
Проектного положения
Профессиональной деятельности
Профильных поверхностей
Профильного материала
Профилактическое обслуживание
Профилограммы поверхности
Прогнозирования остаточного
Прогнозирования усталостной
Прочности коррозионной
Прогнозирование усталостной
Программы испытания
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки