Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Перемещения дислокации



представлена на рис. 47. Повышение реальной прочности с возрастанием плотности дислокации объясняется тем, что при этом возникают не только параллельные друг другу дислокации, но и дислокации в разных плоскостях и направлениях (см. рис. 10). Такие дислокации будут мешать друг другу перемещаться, и реальная прочность металла повысится. Давно известны способы упрочнения, ведущие к увеличению полезной плотности дислокаций; это — механический наклеп, измельчение зерна и блоков мозаики, термическая обработка и т. д. Кроме того, известные методы легирования (т. е. внедрение в решетку чужеродных атомов), создающие всякого рода несовершенства и искажения кристаллической решетки, также являются методами создания препятствий для свободного перемещения дислокаций (блокирования дислокаций). Сюда же относятся способы образования структур с та;к называемыми упрочняющими фазами, вызывающими дисперсионное твердение и др. Об этих методах более подробно будет сказано «иже. Однако при всех этих способах упрочнения прочность не достигает теоретического значения. Следовательно, в той или иной степени наличие дислокаций в реальном металлическом кристалле является причиной более низкой его прочности по сравнению с теоретической, и одновременно придающей способность пластически деформироваться.

Напряжение при достижении им предела текучести вызовет пластическую деформацию, т. с. приведет в движение дислокации. Если препятствий для свободного перемещения дислокаций нет и они не возникают в процессе деформации, то деформация может быть сколь угодно большой. При растяжении образец может удлиниться в десятки и сотни раз, превращаясь в подобие проволок. В некоторых случаях (при определенных температурах и скоростях деформации некоторых металлов) это наблюдается и носит название сверхпластичность. Конечно, так удлиниться на многие сотни и даже тысячи процентов образец сможет лишь тогда, когда не возникает местное сужение (шейка). Если возникает шейка, то деформация локализуется и в таком металле, в конечном итоге, произойдет разделение образца на два куска, но тогда, когда в месте разделения сечение утонилось до нуля. Это не редкий случай (рис. 48).

Из сказанного выше уже известно, что пластическая деформация осуществляется путем перемещения дислокаций.

Повышение прочности при динамических нагрузках обусловлено отставанием внутри-кристаллитных пластических деформаций, происходящих с относительно небольшой скоростью, от нарастания напряжений. Так как скорость перемещения дислокаций не может рревышать местной скорости звука, то напряжение .распространяется через ударную волну.

Следовательно, увеличение числа неоднородностей, т. е. увеличение количества примесей и числа искажений кристаллической решетки, а также измельчение кристаллических блоков упрочняют .металл, создавая препятствия на пути перемещения дислокаций и блокируя их распространение.

Современными методами легирования (т.е. внесения в решетку чужеродных атомов), создающими всякого рода несовершенства и искажения кристаллической решетки, являются методы создания препятствий для свободного перемещения дислокаций (блокирования дислокаций). К данной технологии относятся способы образования структур с так называемыми упрочняющими фазами, вызывающими дисперсионное твердение, и др. Известны следующие методы производства дисперсионно-упрочненных сплавов: порошковые методы, методы взаимодействия твердого металла с газовой средой (метод окисления и азотирования) и металлургические методы (плавка и легирование тугоплавкими металлами).

Расхождения между теоретическим и реальным сопротивлением сдвигу, или между теоретической и реальной прочностью при пластическом деформировании, было объяснено дислокационным механизмом пластической деформации. Для перемещения дислокаций (рис. 16) требуется лишь незначительное перемещение атомов и пластическая деформация совершается при небольшой величине касательных напряжений, что и соответствует экспериментальным данным.

В отличие от идеального кристалла, в кристалле с дислокациями процесс скольжения протекает не путем одновременного перемещения всех атомов в плоскости скольжения, а только небольших групп, что соответствует движению дислокаций. Легкость перемещения дислокаций объясняется тем, что потенциальная энергия кристалла в зоне дислокаций выше, чем энергия в зонах, где дислокация отсутствует, поэтому напряжение, необходимое для осуществления сдвига, значительно меньше, чем для бездислокационного металла. Так как одна дислокация приходится на 103 атомов, то общее число смещенных атомов при деформации металла будет большое. Схема сдвига в кристалле, обусловленного последовательным перемещением дислокации при приложении силы Р, дана на рис. 56. Возникшая у одной грани кристалла дислокация (рис. 56, б) перемещается вдоль плоскости скольжения АА (рис. 56, в) к противоположной стороне кристалла, образуя на поверхности ступеньку (рис. 56, г). При этом верхняя половина кристалла смещается относительно нижней на расстояние, равное вектору Бюргерса, Упрочнение при пластической деформа-

дислокациями. При деформировании такой стали длина пути перемещения дислокаций существенно короче, а число элементарных актов пластической деформации в единицу времени больше, чем у стали, не подвергнутой ТМО. Иными словами, в этих условиях степень одновременности работы межатомных связей возрастает и, следовательно, прочность повышается. В то же время, благодаря одновременному протеканию большого числа элементарных актов пластической деформации, сохраняется удовлетворительная пластичность стали [3].

При пластической деформации в поверхностном слое металла происходит сдвиг в зернах металла, искажение кристаллической решетки, изменение формы и размеров зерен, образование текстуры. Образование текстуры и сдвиги при пластической деформации повышают прочность и твердость металла. Упрочнение (наклеп) металла под действием пластической деформации согласно теории дислокаций заключается в концентрации дислокаций около линии >. сдвигов, а так как дислокации окружены полями упругих напря-.жёний, то для последующих пластических деформаций (т. е. для, перемещения дислокаций) необходимо значительно большее напряжение, чем в неупрочненном металле.

Под средней длиной свободного пробега дислокаций L обычно понимают некоторую усредненную величину перемещения дислокаций в процессе пластической деформации, которая приходится на каждую дислокацию, присутствующую в кристалле после деформации. Такое определение не учитывает как возможную аннигиляцию дислокаций, так и их выход из кристалла. Б. И. Смирнов [66] рассмотрел следующие варианты поведения дислокаций, часто используемые для физической трактовки величины L:

Рис. 56. Схема перемещения дислокации через кристалл

Еще в одной из первых дислокационных теорий упрочнения, предложенной Тейлором [235], предполагалось, что дальнодейетвующее напряжение является единственным источником деформационного упрочнения (рис. 3.1, а). Для перемещения дислокации в кристалле на заметное расстояние необходимо приложить внешнее напряжение, величина которого равна величине внутреннего напряжения кристалла. Поскольку периодичность в изменении внутренних напряжений в

Помимо краевых существуют винтовые дислокации, которые возникают,. в частности, при смещении одной части кристалла относительно другой, как показано на рис. 1.37. В отличие от краевой дислокации, у которой вектор' смещения совпадает с направлением перемещения дислокации, у винтовой дислокации этот вектор перпендикулярен направлению распространения сдвига (направлению перемещения дислокации).

Для того чтобы понять, почему для осуществления сдвига путем перемещения дислокации требуются значительно меньшие силы,

Как видно из табл. 19, изменение величины U в ряду Si—Ge—InSb— GaAs—GaP (в такой же последовательности происходит и увеличение ионной составляющей в силах связи) не носит закономерного характера, тогда как приведенная энергия активации перемещения дислокации Е закономерно уменьшается. В то же время приведенная температура перехода в пластичное состояние практически одна и та же для всех указанных веществ, за исключением GaP, где вклад ионной составляющей в силах связи наибольший. Принимая во внимание общность характера двух высокотемпературных участков, описываемых в принципе соотношениями (46) и (47), можно предположить, что в первом высокотемпературном участке пластическая деформация осуществляется двойникованием. Действительно, поскольку этот вид деформации происходит путем образования ,и движения перегибов на частичных дислокациях, то к этому процессу должны быть применимы уравнения (46) и (47), что и наблюдается в действительности. Напряжение Пайерлса при низких температурах для деформации двойникованием ниже, чем для скольжения. Это

Пересечение кристалла скользящей дислокацией приводит к сдвигу на величину вектора Бюргерса (рис. 1.5, а—в). Для перемещения дислокации в плоскости скольжения достаточно небольших напряжений (в металлах порядка 10~4 модуля сдвига). В силу этого сдвиговая прочность реальных кристаллов, содержащих дислокации, на несколько порядков ниже сдвиговой прочности идеальных кристаллов.

На самом же деле скольжение происходит там, где уже имеются дислокации. Механизм скольжения есть механизм перемещения дислокации. В относительное смещение поочередно вовлекаются различные атомы сдвигающихся слоев. Для такого поочередного вовлечения в смещение требуется сила намного меньшая, чем та, которая нужна для одновременного смещения всех атомов слоя.

На рис. 4.7 изображена картина постепенного перемещения дислокации, в результате которого происходит сдвиг пачек кристалла на одно межатомное расстояние.

2.8. Пластическаядеформация ползучести. В некоторых случаях пластическая деформация происходит даже при напряжениях, вызванных внешней нагрузкой, меньших по величине, чем предельные напряжения скольжения. Такой тип деформации называется ползучестью. Объяснение ему можно дать такое. Энергия, необходимая для перемещения дислокации, сверх той, которая обеспечивается внешними силами, связана с упругими тепловыми колебаниями атомов. Она поступает в виде квантов энергии упругих колебаний, называемых фононами. Постольку, поскольку суммарное число взаимодействий, необходимых для сообщения подвижности дислокаций, велико, при обыкновенной температуре ползучесть происходит медленно.

Для перемещения дислокации из одного равновесного состояния в другое требуется преодолеть силовой барьер, высота которого определяется суммой атермической и термической компонент напряжения:

В реальном кристалле имеются дислокации. Сдвиг развивается не синхронно, а последовательно, путем перемещения дислокации (рис. 1-9, //). В верхней части кристалла, расположенной выше линии АА, имеется лишняя плоскость, заполненная атомами (линейная дислокация). Под действием приложенного напряжения т она перемещается, пока не выйдет на поверхность кристалла. Для перемещения дислокации требуется напряжение, на несколько порядков меньше, чем для синхронного сдвига.




Рекомендуем ознакомиться:
Подготовка материалов
Подготовка питательной
Подготовка заготовок
Подготовке производства
Параметрами характеризующими
Подготовки поверхности
Подготовкой поверхности
Подготовленные поверхности
Подгруппе относятся
Подконтрольных госгортехнадзору
Подкрепленных конструкций
Подлежащие цементации
Подлежащих цементации
Подлежащих регистрации
Подобного оборудования
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки