Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Периодического характера



внешней периодической силы в ряд; в указанном случае \ Wy (kiQ) \ ограничен, а А и все Ak стремятся к нулю, если внешнее периодическое воздействие по модулю стремится к нулю. В силу этого вынужденное движение остается в сколь угодно малой окрестности исследуемого положения асимптотически устойчивого равновесия, если внешнее воздействие по модулю достаточно мало. Именно это обстоятельство дает возможность изучать действие внешней силы на систему в линейном приближении— если амплитуда внешнего воздействия достаточно мала, то результирующее движение не выходит за пределы малой окрестности положения равновесия, в котором движение с достаточной точностью может быть описано линейными дифференциальными уравнениями.

Разложив периодическое воздействие в гармонический ряд, мы сразу сможем ответить на вопрос о том, как будет вести себя гармонический резонатор, находящийся под этим воздействием. Каждая из гармонических составляющих будет вызывать такой эффект, как если бы другие составляющие отсутствовали (принцип суперпозиции). Но мы уже знаем, что гармонический резонатор особенно сильно отзывается на такое гармоническое воздействие, на которое он «настроен», т. е. частота которого близка к собственной частоте резонатора. Из всех гармонических составляющих внешнего воздействия только эта составляющая вызовет сильные колебания резонатора. Все остальные гармонические составляющие не вызовут заметных колебаний резонатора, так как их частоты значительно отличаются

Исследования устойчивости оксидных пленок сталей на периодическое воздействие водяной струей проводились в газовом канале в запыленном сланцевой золой потоке продуктов сгорания при температурах стенки трубы в стационарном состоянии 500 и 600 °С [181].

Измеренная фактическая глубина износа экрана труб больше, чем расчетные глубины коррозии по приведенным в таблице 4.5 формулам. Такой результат указывает на то, что периодическое воздействие воды на поверхность труб вызывает ускорение коррозии металла, причиной которого является циклическое разрушение образующейся в промежутках между очистками на поверхности металла оксидной пленки. Относительное ускоряющее действие очистки на износ труб характеризует соотношение [см. формулу (5.15)] fi=As/As' — 1, где As — фактическая глубина износа; As' — глубина износа (высокотемпературной коррозии) при отсутствии силового действия на оксидную пленку.

Для повышения сцепления покрытий Си—UO2, осажденных из чистого раствора, содержащего уранил-ионы, использовалось периодическое воздействие ультразвукового поля в процессе электролиза [119].

Для защиты металлических поверхностей от коррозии в атмосферных условиях умеренного климата (под навесом и внутри помещений). Выдерживает периодическое воздействие бензина, масел, воды. Наносится по АК-070

Наносится по эмали ЭП-56. Покрытие атмосферо-стойкое обладает высокой химической стойкостью, особенно в щелочах. Выдерживает периодическое воздействие масел и бензина

Связанные колебания возникают в автоколебательной системе с источником энергии, если к ней приложено периодическое воздействие. В зависимости от разности (расстройки) собственной частоты автоколебаний и частоты периодической силы в системе возбуждаются либо периодические (захватывание), либо почти периодические колебания. Если расстройка достаточно мала (соотношение частот выражается отношением взаимно простых целых чисел), то имеет место явление захватывания, если сравни-

Исследованию связанных колебаний в неавтономных автоколебательных системах посвящено много работ: [1, 2] и др. В этих работах не учитывается динамическое взаимодействие источника энергии и колебательной системы. Связанные колебания в системе с ограниченным возбуждением рассмотрены в [3, 4]. Система, изученная в этих работах, характеризуется тем, что автоколебательный механизм возбуждения колебаний и периодическое воздействие зависят от свойств одного и того же источника энергии (автономная система), обеспечивающего функционирование системы. Следует отметить, что интересным является также случай, когда имеет место независимость этих двух механизмов возбуждения колебаний от свойств одного и того же источника энергии. В данном случае автоколебательная система с источником энергии оказывается под воздействием периодической силы, явно зависящей от времени, и уравнения, описывающие эту систему, являются неавтономными. Заметим, что подобную систему условно можно называть системой, взаимодействующей с двумя источниками энергии, в которой один из источников является неидеальным, другой — идеальным. Действительно, если периодическая сила генерировалась бы некоторым вторым источником энергии, имеющим ограниченную мощность, то такое название было бы вполне адекватным. Тогда колебания, происходящие в указанной системе, оказались бы зависящими также от свойств источника, генерирующего периодическую силу, и система, превращаясь в автономную, описывалась бы тремя уравнениями вместо двух. Чтобы не усложнять задачу, на данном этапе мы моделировали неавтономную систему, описываемую уравнениями

Периодическое воздействие паров цеха приготовления пищи, хлебопекарен и т. п.; X; XT Грунт ГФ-020 1 слой

Связанные колебания возникают в автоколебательной системе с источником энергии, если к ней приложено периодическое воздействие. В зависимости от разности (расстройки) собственной частоты автоколебаний и частоты периодической силы в системе возбуждаются либо периодические (захватывание), либо почти периодические колебания. Если расстройка достаточно мала (соотношение частот выражается отношением взаимно простых целых чисел), то имеет место явление захватывания, если сравни-

К вынужденным относятся колебания, вызываемые действием внешних сил, изменяющихся по определенному закону. Для вынужденных колебаний характерно протекание свободных колебаний одновременно с колебаниями периодического характера от внешнего возбудителя (рис. 24.2). При таких колебаниях амплитуда меняется во времени и при определенных условиях имеет тенденцию к неограниченному росту (резонансные колебания).

Если машинный агрегат не обладает свойством саморегулирования, то колебания скорости звена приведения не имеют периодического характера. Равномерность движения достигается применением специальных устройств — регуляторов скорости. Регуляторы скорости увеличивают или уменьшают мощность двигателя, сохраняя постоянство скорости ведущего звена механизма, т. е. регулирование осуществляется за счет изменения внешних воздействий на механизм со стороны двигателя.

Это изменение является следствием двух факторов — периодического изменения приведенного момента инерции механизма и периодического характера действия сил и моментов, приложенных

Прямое наблюдение периодичности образования и разрушения вторичных структур при граничном трении по интенсивности износа, величинам силы трения и ЭДС, возникающей при трении, было выполнено в работе [79]. Исследования проводились на прецизионной машине на образцах с минимально возможной площадью касания при непрерывной регистрации износа, силы трения и трибо-ЭДС. При установившемся режиме изнашивания отчетливо наблюдается периодическое изменение коэффициента трения и ЭДС. Длительность цикла образования и разрушения вторичных структур изменяется в зависимости от скорости скольжения и нагрузки. Влияние внешних параметров на количественные характеристики периодических кривых отмечается и в работах [76—78]. Анализ этих результатов свидетельствует о том, что изучение периодического характера структурных изменений является реальным путем для создания новых методов оценки износостойкости фрикционных материалов. С позиций представлений об усталостном разрушении поверхностей трения периодический характер структурных изменений открывает новые возможности для определения основных характеристик усталостного процесса: числа циклов до разрушения и действующих на поверхности напряжений и деформаций. Этот сложный вопрос1 является весьма актуальным для дальнейшего развития усталостной теории износа, поскольку существующие методы оценки указанных параметров имеют определенные недостатки. Так аналити-

Оценка величины пластической деформации показала (рис. 42), что ее градиент имеет место и при смазке, однако он выражен меньше, чем при сухом трении. Если в слое толщиной ~ 12 мкм (результаты рентгеновского анализа) величина пластической деформации при трении со смазкой лишь немногим меньше, чем при сухом трении, то в слое толщиной 3—4 мкм (результаты измерения микротвердости) это различие более существенно. Таким образом, смазка не нарушает общего периодического характера структурных изменений, однако количественные характеристики этого процесса в ее присутствии заметно меняются.

Если значение действующей деформации и деформации при N = 1 зависит от целого ряда факторов, то, как показали результаты структурных исследований, величина числа циклов до разрушения является более стабильной характеристикой, независимой от способа ее определения, поэтому количественно именна с ней следует связать интенсивность износа поверхностей трения. Целесообразность такого соотношения вытекает и из того, что с помощью уравнения (3.4) можно оценивать число циклов до разрушения в тех случаях, когда условия испытания не позволяют выявить периодического характера изменения того или иного

Периодический характер структурных изменений, впервые выявленный в работе [76], затем был зафиксирован в целом ряде работ для различных условий трения [26, 77, 78]. Большинство авторов связывают такой вид зависимости с периодическим разрушением поверхностного слоя и отмечают зависимость времени (числа циклов, пути трения), за которое материал проходит всю стадию от упрочнения до разрушения, от внешних условий трения. Проявление периодического характера процесса обнаружено по изменению микро- [76] и макронапряжений [77], электросопротивления [103], величины блоков [78], микротвердости [26, 122]. Соответственно и внешние характеристики трения, такие, как коэффициент трения и интенсивность износа, также могут периодически изменяться. Для тяжелых условий трения периодический характер изменения износа может быть выявлен обычным весовым методом [26, 136], для более легких режимов выявление периодического характера изменения силы трения стало возможным только путем прецизионных измерений [79]. Сказанное выше в равной степени относится как к основному материалу (большинство исследований выполнено на сталях), так и к пленкам вторичных структур, образующихся в процессе трения. При тяжелых режимах работы, связанных с повышением температуры на контакте (например, при нестационарном тепловом нагружении), наблюдается периодическое изменение структуры, обусловленное не только действием повторного циклического нагружения, но и циклическим изменением температуры трения, приводящим к фазовым превращениям на контакте, которые также носят циклический характер. В результате наблюдается четко выраженная периодичность изменения износа от числа торможения [136].

На рис. 7 и 8 приведены графики коэффициентов усиления на втором и третьем этапах в этом случае. Для п, удовлетворяющих двойному неравенству 0,5^п<Л, переходный процесс не заканчивается на четвертом этапе, однако колебания не имеют периодического характера.

Положительный заряд ядра атома, а также число электронов атома численно равны порядковому (атомному) номеру элемента. По мере увеличения атомного номера химические свойства элементов периодически повторяются. С увеличением атомного номера периодически изменяются также и физические свойства: атомный объем, плотность, температуры плавления (кристаллизация) и кипения, коэффициенты линейного расширения и объемной сжимаемости, растворимость, электропроводность и др. Не носят периодического характера свойства, связанные со строением атомного ядра (атомная масса, строение рентгеновских спектров и др.).

Химические свойства элементов периодически повторяются по мере увеличения порядкового номера. Периодическая система позволяет определять свойства элемента на основании свойств его соседей. Металлические свойства элементов в группе возрастают с увеличением порядкового номера (радиус внешней электронной оболочки). Периодический закон проявляется и в других физических и химических свойствах элементов (с увеличением порядкового номера периодически изменяются атомные объемы, температуры плавления и кипения, плотность, растворимость, электропроводность и др.). Изменение свойств соединений элементов также находится в периодической зависимости от положения элемента в периодической системе. Изменения некоторых свойств (атомные веса, рентгеновские спектры и др.) не имеют периодического характера, так как они связаны не со строением электронных оболочек, а с ядром атома.

Такое изменение нагрузки обычно не носит периодического характера, и практически оно, как отравило, значительно меньше.




Рекомендуем ознакомиться:
Параллельных испытаний
Параметров исследуемого
Параметров колебаний
Параметров конических
Параметров контролируемых
Параметров материалов
Параметров надежности
Параметров напряженного
Параметров некоторых
Параметров обеспечивающих
Параметров окружающей
Параллельных плоскости
Параметров оптимизации
Параметров парогенератора
Параметров поскольку
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки