Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Пластичного разрушения



При прессовании пластичного материала давление внутри подшипниковой камеры может быть очень высоким. Чтобы не повредить манжету, ее устанавливают в этом случае рабочей кромкой наружу (рис. 11.17,6). Тогда при повышении давления масло отогнет кромку манжеты и избыток его вытечет наружу.

юлучается на изделиях из пластичного материала; на твердом материале резьба, в особенности крупная, накатывается на мощных станках с большими нагрузками.

17.7. Известно, что при расчете на прочность детали из пластичного материала в случае ее статического нагружения концентрация напряжений не учитывается. Как обосновать это указание?

а—для пластичного материала (сталь); 0 —для хрупкого (чугун)

Из предшествующего очевидно, что всякая система, находящаяся под действием нагрузок постоянного направления и изготовленная из достаточно пластичного материала, обладает в известной степени свойством самоупрочнения. Временное повышение рабочей нагрузки до величины, вызывающей умеренные пластические деформации, упрочняет систему. Если же деталь испытывает переменные нагрузки, то переход за предел текучести под действием нагрузки одного направления ослабляет материал против действия нагрузки противоположного направления.

Если и палец и щеки выполнены из твердых, не поддающихся расклепыванию материалов, применяют крепление расплющиваемыми заглушками (вид г/) или кольцами из пластичного материала (низкоуглеродистая сталь, отожженная медь и т. д.), зачеканиваемыми в выточки пальца (виды ч - щ).

1 Имеется в виду, что вал изготовлен из пластичного материала.

номичными. Если деталь изготовлена из пластичного материала, соединения могут быть разъемными. Конструкция соединения должна обеспечивать надежный прижим собранных деталей.

и условие прочности балки из пластичного материала имеет вид

Как известно (см. § 2.10), предельным напряжением для пластичного материала является предел текучести сг.г, а для хрупкого — предел прочности 0В. Поэтому предельное напряженное состояние у пластичных материалов наступает при возникновении остаточных деформаций, а у хрупких — при начале разрушения.

График зависимости 0кр от 5^ для стержней из пластичного материала (низкоуглеродистой стали) показан на рис. 2.118.

• Различают пластичное (вязкое) и хрупкое разрушение металлов. Характерная особенность пластичного разрушения — большая предшествующая пластическая деформация, составляющая десятки и даже сотни процентов относительно поперечного сужения или удлинения. Высокопластичные материалы разрушаются путем среза (соскальзывания) под действием максимальных касательных напряжений (рис. 13.38, а), менее пластичные получают разрушение типа «конус-чашечка» (рис. 13.38, б). Излом имеет матовый оттенок и волокнистый характер. Пластичное разрушение требует затрат большого количества энергии, поэтому при эксплуатации конструкций случается сравнительно редко.

Наиболее важным моментом пластичного разрушения путем слияния пор является их зарождение. Были предложены разные механизмы зарождения пор. Петч [391] предположил, например, что поры образуются в процессе пластической деформации по границам раздела матрица — фаза из-за различий пластических и упругих свойств частицы и матрицы. Эти несплошности затем растут за счет развития

Влияние температуры на вязкость разрушения путем слияния пор до сих пор остается практически неизученным. Имеются многочисленные данные по изучению вязкости разрушения пластичных материалов, однако конкретных указаний о механизмах разрушения нет,. Можно полагать, что в этих случаях материалы разрушались слиянием пор, тогда влияние температуры на вязкость разрушения путем слияния пор состоит в ее повышении с понижением температуры [388]. В работе [384] указано, что для малоуглеродистой стали характерно» снижение вязкости разрушения в интервале температур пластичного-разрушения, причем при повышении температуры от 120 К до комнатной вязкость разрушения снижается более чем вдвое.

На рис. 5.13 схематически представлены температурные зависимости механических свойств (предела текучести сгт, разрушающего напряжения Sk, пластических характеристик \Р и б) однофазных материалов при одноосном растяжении. На этой схеме выделены температурные области: хрупкого разрушения при температурах ниже Т%, пластичного разрушения при температурах выше Г» и. хрупко-пластичного перехода Г»—Т%.

В работах [408, 430—433] изучено влияние прочности связи частиц с матрицей, а также пластичности матрицы на хрупко-пластичный переход в ОЦК-металлах. Обобщенная схема хрупко-пластичного перехода материалов на основе тугоплавких ОЦК-металлов приведена в [95]. Схематично температурная зависимость механических свойств ОЦК-металлов, упрочненных частицами, на которой указаны области хрупкого и пластичного разрушения, а также хрупко-пластичного перехода, приведена на рис. 5.16.

персных частиц вносит в эту схему принципиальные дополнения, заключающиеся в появлении дополнительной переходной температурной области — области пластичного разрушения путем слияния пор после сравнительно небольшой пластической деформации.

В области пластичного разрушения и высокой пластичности, которая отсутствует в сплаве МТАН [433], нарастает пластичность, связанная с хрупко-пластичным переходом самих частиц и обходом дислокациями частиц путем поперечного скольжения; поверхность разрушения характеризуется наличием крупных ямок, свидетельствующих о быстром укрупнении пор. За областью пластичного разрушения следует область высокотемпературного межзеренного разрушения.

Обзорные работы Эшби [434—436], в которых для материалов различных классов были построены и проанализированы карты механизмов разрушения, сыграли важную роль в обобщении многочисленных экспериментальных и теоретических исследований процесса разрушения. Однако применительно к вопросам пластичного разрушения, представляющим процесс развития и накопления дефектов в материале при деформировании, карты Эшби оказываются недостаточными для анализа и прогнозирования поведения материалов при нагружении, поскольку они не отражают динамику процесса [437]. В последующих работах Эшби [370» 3931 разработана простая модель пластичного разрушения, учитывающая накопление в материале повреждаемости и тип напряженного состояния.

С целью изучения закономерностей пластичного разрушения молибдена в широком интервале температур и объяснения характерных типов изломов используем диаграмму истинная деформация — температура (ИДТ), которая сочетает диаграмму структурных состояний и температурную зависимость ряда критических деформаций, отражающих динамику возникновения и развития несплошностей в образце при растяжении.

Это означает, что температурный ход кривой ek (рис. 5.18, кривая 8} должен определяться температурной зависимостью коэффициента деформационного упрочнения. Действительно, для исследованного сплава МЧВП произведение ekK? оказалось постоянной величиной во всем интервале температур пластичного разрушения (100—1000 °С).

Достаточно наглядным подтверждением справедливости приведенных выше оценок может служить простой расчет по фрактограммам пластичного разрушения. Например, из фрактограммы образца, испытанного при 400 °С (рис. 5.19, в), определялась суммарная длина




Рекомендуем ознакомиться:
Передаваемый соединением
Передаваемой информации
Передавать вращающий
Передовых предприятий
Передовую технологию
Передвижные лаборатории
Передвижных котельных
Передвижная лаборатория
Перегретого конденсата
Перегрева околошовной
Перегрузке двигателя
Переходах устойчивость
Параллельной обработки
Переходных сопротивлений
Переходными процессами
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки