Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Пластмассы представляют



Широкое применение в качестве материалов зубчатых колес находят пластмассы. Отличаются пластмассовые колеса малым весом, бесшумностью, износостойкостью и коррозионной стойкостью. Колеса изготовляют из текстолита, гетинакса, полиамидных смол (П-68, ЛК-7), капрона, фторопласта и др.

Пластмассы отличаются, малой плотностью, высокими диэлектрическими свойствами, хорошими теплоизоляционными характеристиками, устойчивостью к атмосферным воздействиям, стойкостью к агрессивным средам и резким сменам температур.

Пластические массы (табл. 66, 67) получают на основе высокомолекулярных соединений — полимеров. Их разделяют на два класса — термопласты и реактопласты. Термопласты (термопластичные пластмассы) при нагреве расплавляются, а при охлаждения возвращаются в исходное состояние. Реактопласты (термореактивные пластмассы) отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств. Основные механические характеристики пластмасс те же, что и для металлов.

Весовые характеристики. В большинстве своем пластмассы отличаются сравнительно низкой плотностью, колеблющейся в пределах 1,05—2,1 г/см3 (в среднем 1,4—1,5 г/см3). К числу наиболее легких монолитных (физически однородных) пластиков относятся полиизобутилен, полипропилен и полистирол, плотность которых соответственно равна 0,90; 0,95 и 1,05 г/см3. Плотность газонаполненных пластмасс лежит в пределах 0,02 (мипора) — 0,85 (наполненные микропористые резины) г/см3. Введение в исходные композиции большого количества минеральных наполнителей приводит к значительному утяжелению пластмассе вых изделий: их плотность может достигать 3,0—4,0 г/см3. Большинство пластмассовых изделий примерно вдвое легче тех же изделий, выполненных из алюминиевых сплавов (дуралюмин и др.), и в 5 раз легче тех же изделий из чугуна или стали. Это обстоятельство, в сочетании с относительно высокими прочностными характеристиками, позволяет пластмассам в ряде случаев успешно конкурировать с металлами. О целесообразности применения пластмассы вместо другого материала можно судить на основании сопоставления значения их удельной прочности

Эти пластмассы отличаются относительно большим коэффициентом трения (табл. XII. I)1, незначительным износом при повышенной температуре, легкостью формования и небольшой стоимостью. В машинах, испытывающих ударные нагрузки, могут

В последнее время большое значение приобрели полимерные материалы, состоящие из смеси сополимеров стирола с акрило-нитрилом, и резины из бутадиено-акрилонитрильного каучука (торговое название Краластик В, D, F, H, J и т. д.). Эти пластмассы отличаются очень хорошими свойствами, а именно: прочностью на растяжение az = 210-^650 кГ/см2, прочностью на сжатие ас = 280-Г-1050 кГ/см2, прочностью на изгиб аи = 280+--н!120 кГ/см2, модулем упругости при сжатии Е = 1,9-^6,5 X X 10~5 кГ/см2, твердостью по Шору 70—80, водостойкостью, кислотоупорностью, стойкостью против воздействия щелочей, солей и других химических соединений, теплостойкостью 80— 100° С и легкостью (плотность Q = 1,02-ь 1,08 кг/дм3).

Термореактивные пластмассы на основе термореактивных полимеров (смол) после тепловой обработки — отверждения — переходят в термостабильное состояние. Термореактивные пластмассы отличаются хрупкостью, имеют большую усадку 10—15% и содержат в своем составе наполнители.

Пластмассы с волокнистыми наполнителями — волокнистые композиционные материалы — обладают анизотропией механических свойств. Степень анизотропности определяется длиной волокон и распределением наполнителя. Различают следующие их виды: волокниты, асбо-волокниты и стекловолокнами. В качестве связующего используют фенолформальдегидные смолы, а наполнителем являются очесы хлопка, волокна асбеста и стекловолокно. Волокнистые пластмассы отличаются повышенными теплостойкостью (до 280 °С) и ударной вязкостью (25...150 кДж/м2). Их применяют для изготовления фланцев, шкивов, втулок. Из стекловолокнитов изготавливают детадр с резьбой и электромеханические силовые элементы.

Термореактивные пластмассы на основе термореактивных полимеров (смол) после тепловой обработки — отвердения — переходят в термостабильное состояние. Термореактивные пластмассы отличаются хрупкостью, имеют большую усадку 10—15 % и содержат в своем составе наполнители.

Пластические массы (табл. 66, 67) получают на основе высокомолекулярных соединений — полимеров. Их разделяют на два класса — термопласты и реактопласты. Термопласты (термопластичные пластмассы) при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние. Реактопласты (термореактивные пластмассы) отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств. Основные механические характеристики пластмасс те же, что и для металлов.

Обычно пластмассы представляют собой сложные композиции, состоящие из нескольких веществ. Требуемые эксплуатационные свойства пластмасс получают благодаря подбору отдельных компонентов и их определенным сочетаниям.

Слоистые армированные термореактивные пластмассы представляют собой пластические материалы, армированные параллельно расположенными слоями наполнителя и имеющие явно выраженную слоистую структуру. Слоистые пластики применяют в виде листов и плит, стержней, прутков различного профиля, трубок, цилиндров, крупногабаритных изделий сложной формы. В качестве наполнителя для слоистых пластиков используют материалы органического (бумага, хлопчатобумажные ткани, древесный шпон, ткани из синтетических волокон) и неорганического (асбестовые бумага, картон, ткань, стеклянная ткань, ткань из кварцевых или кремнеземных волокон, базальтовых волокон и т. д.) происхождения.

В зависимости от используемых наполнителей пластмассы подразделяют на композитные и слоистые. Некоторые пластмассы представляют собой чистые смолы и применяются без наполнителей. Композиции из смолы и наполнителей обычно прочнее чистой смолы. Наполнитель влияет на водостойкость, химическую стойкость и диэлектрические свойства, на теплостойкость и твердость пластмассы. Наполнители существенно снижают стоимость пластмасс. Положительные свойства пластмасс: малая плотность, удовлетворительная механическая прочность, не уступающая в ряде случаев цветным металлам и сплавам и серому чугуну; химическая стойкость, водо-масло- и бензостойкость; высокие электроизоляционные свойства; фрикционные и антифрикционные; шумо- и вибропо-глощающие свойства; возможность окрашивания в любой цвет; малая трудоемкость переработки пластмасс в детали машин. Отдельные виды пластмасс обладают прозрачностью, превышающей прозрачность стекла. Вместе с тем, применение пластмасс ограничивается их отрицательными свойствами. Недостаточная теплостойкость некоторых разновидностей пластмасс вызывает их обугливание и разложение при температуре свыше 300° С. Эксплуатационная температура для изделий из пластмасс обычно не превышает 60° С и реже 120° С. Только пластмассы отдельных видов допускают эксплуатационную температуру 150—260° С и выше. Низкие теплопроводность и твердость, а также ползучесть пластмасс в ряде случаев нежелательны. Свойства и методы испытания пластмасс приведены ниже.

типа (найлон), материалы на основе эфиров целлюлозы, аллиловые смолы и др. Эти пластмассы представляют значительный интерес для машиностроения.

Слоистые пластмассы представляют собой спрессованные слои-'стые наполнители (бумагу, ткань или шпон), обработанные термореактивными смолами.

Газонаполненные пластмассы представляют собой гетерогенные дисперсные системы, состоящие из твердой и газообразной фаз. Структура таких пластмасс образована твердым, реже эластичным полимером — связующим, которое образует стенки элементарных ячеек или пор с распределенной в них газовой фазой — наполнителем. Такая структура пластмасс обусловливает некоторую общность их свойств, а именно — чревычайно малую массу и высокие теплозвукоизоляционные характеристики. В зависимости от физической структуры газонаполненные пластмассы делят на пенопласты, поропласты и сотопласты.

Армированные пластмассы представляют собой полимерную матрицу, упрочненную волокнами. Свойства армированных пластмасс определяются прежде всего характеристиками армирующих волокон, в том числе углеродных. Техника получения волокнообразного углерода путем прокаливания хлопчатобумажной нити известна еще со времени изобретения лампы накаливания. В Японии был разработан метод получения углеродных волокон путем высокотемпературной обработки волокон из полиакрилонитрила. Эту разработку стимулировала перспектива улучшения свойств пластмасс путем армирования их углеродными волокнами; в результате были созданы современные промышленные материалы с улучшенными свойствами и структурой. Важным направлением материаловедения является также сочетание углеродных волокон с металлической матрицей.

Армированные пластмассы представляют собой полимерную матрицу, упрочненную волокнами. Свойства армированных пластмасс определяются прежде всего характеристиками армирующих волокон, в том числе углеродных. Техника получения волокнообразного углерода путем прокаливания хлопчатобумажной нити известна еще со времени изобретения лампы накаливания. В Японии был разработан метод получения углеродных волокон путем высокотемпературной обработки волокон из полиакрилонитрила. Эту разработку стимулировала перспектива улучшения свойств пластмасс путем армирования их углеродными волокнами; в результате были созданы современные промышленные материалы с улучшенными свойствами и структурой. Важным направлением материаловедения является также сочетание углеродных волокон с металлической матрицей.

Газонаполненные пластмассы представляют собой гетерогенные системы, состоящие из твердой или упругоэластической фазы — связующего, газообразной фазы — наполнителя.

Пластмассы разделяют на простые и сложные. Простые пластмассы представляют собой чистые полимеры, например полиэтилен, органические стекла и др. Сложные пластмассы состоят из связующего вещества, наполнителя, отвердителя, ингибитора, пластификатора, красителя и смазывающих добавок.

Газонаполненные пластмассы. Легкие и сверхлегкие газонаполненные пластмассы представляют особый класс материалов, состоящих из твердой и газообразной фаз. Такая особенность строения материала обусловливает его высокие теплозвукоизоляционные характеристики. По структуре газонаполненные пластмассы делят на пенопла-сты, поропласты и сотопласты.




Рекомендуем ознакомиться:
Переходная характеристика
Переходной температуры
Переходного контактного
Переходов выполняемых
Переключательной магистрали
Параллельное расположение
Переключения распределителя
Переключение контактов
Перекрытия коэффициент
Перекрывает отверстие
Переливным золотником
Перемешивание компонентов
Перемешивающего устройства
Перемешивающим устройством
Перемещается поступательно
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки