Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Поперечную прочность



значительную продольную и поперечную жесткость. Применяют ремни с различной структурой поперечного сечения. Одно из типичных.и. наиболее распространенных сечений изображено на рис. 12.22. Слои шнурового (или тканого). корда / являются основным несущим эле-

Ремень должен быть гибким для возможности работы на шкивах малых диаметров и вместе с тем иметь достаточную поперечную жесткость во избежание глубокого заклинивания в канавках шкивов и радиального скольжения вследствие поперечного сжатия.

Многослойные ремни. За рубежом получили распространение многослойные ремни «Экстрамультус» (рис. 13), состоящие из одного или нескольких слоев нейлона с обкладками из хромовой кожи или с одной кожаной обкладкой и с покрытием прорезиненной тканью нерабочей стороны. Нейлоновый сердечник может быть сплошным (рис. 13, а) или из отдельных полос (рис. 13, б), что уменьшает поперечную жесткость ремня.

Поликлиновые ремни имеют тонкую плоскую часть, в которой размещаются высокопрочный шнуровой корд и несколько слоев диагонально расположенной ткани, придающей ремню большую поперечную жесткость (рис. 22).

Устойчивость и жесткость конструкций в поперечном направлении может обеспечиваться как рамой, образованной жестким сопряжением ригелей с колоннами, так и постановкой поперечных связей (связевая схема). В случае, когда по условиям конструктивного оформления узлов примыкания ригелей и связей к колоннам эти узлы передают опорные моменты, образуется комбинированная схема, которая называется рамно-связевой (рис.2.1). Использование связевых и рамно-связевых схем каркаса позволяет существенно увеличить их поперечную жесткость, уменьшить

Компенсаторы всех типов устанавливают на прямых участках трубопроводов, имеющих разное положение в пространстве. Имея в виду небольшую поперечную жесткость компенсаторов, рекомендуется устраивать их вблизи опор.

Многослойные ремни. За рубежом получили распространение многослойные ремни «Экстрамультус» (рис. 13), состоящие из одного или нескольких слоев нейлона с обкладками из хромовой кожи или с одной кожаной обкладкой и с покрытием прорезиненной тканью нерабочей стороны. Нейлоновый сердечник может быть сплошным (рис. 13, а) или из отдельных полос (рис. 13, б), что уменьшает поперечную жесткость ремня.

Поликлиновые ремни имеют тонкую плоскую часть, в которой размещаются высокопрочный шнуровой корд и несколько слоев диагонально расположенной ткани, придающей ремню большую поперечную жесткость (рис. 22).

Уравнение (31) с точностью до погрешностей эксперимента подтвердилось опытами Халпина и Пагано [42] с армированной найлоновыми волокнами резиной, для которой жесткость в продольном направлении (вдоль волокон) во много раз превышает поперечную жесткость, и опытами Лоу и Шепери [63] со стекло-эпоксидными волокнистыми композитами.

ячейки, образованные взаимно-перпендикулярными нитями ткани, связывая между собой резиновые слои. Бреккерная ткань придает рукаву большую поперечную жесткость и широко применяется при изготовлении буровых, паропроводных и нек-рых др. видов прорезиненных рукавов. При сборке рукавов прорезиненную бреккер-ную ткань располагают либо между камерой и первой прокладкой, либо в толще наружной резиновой обкладки рукава.

Для обеспечения надежности передача на упругих пластинах должна иметь высокую поперечную жесткость, которая будет противостоять случайным боковым ударам.

О том, насколько молодой является эта область знаний, можно судить по темам, которые не удалось осветить в книге. Так, хотя влиянию поверхности раздела на продольную и поперечную прочность, а также на характеристики разрушения посвящены отдельные главы, недостаток информации об ее влиянии на характеристики усталости и ползучести не позволил рассмотреть эти вопросы в соответствующих главах. По той же причине не оказалось возможным и подробно обсудить представления об идеальной поверхности раздела. Такой принцип построения книги одобрен всеми ее авторами, сознающими, что учение о поверхности раздела нуждается в развитии. Конечно, и существующий уровень знаний может обеспечить первые шаги новой технологии; тем не менее, необходимость дальнейших исследований не вызывает сомнений.

Независимо от уже имевшихся количественных оценок некоторые исследователи указывали, что свойства композитных материалов должны зависеть от того, насколько поверхности раздела отличаются по свойствам от матрицы и волокна. Купер и Келли [13], например, делят характеристики композитного материала на те, которые определяются в основном прочностью поверхности раздела при растяжении о,, и те, которые определяются сдвиговой прочностью ti. В числе характеристик, определяемых прочностью поверхности раздела при растяжении, авторы называют поперечную прочность, прочность на сжатие и сопротивление распространению трещины в процессе расслаивания при испытании на растяжение. К характеристикам, которые определяются в основном сдвиговой прочностью, относятся критическая длина волокна (длина передачи нагрузки), характер разрушения при вытягивании волокон и деформация матрицы в изломе. Теория Купера и Келли будет рассмотрена ниже.

В последнее время были проведены детальные исследования процесса изготовления композитов с матрицей Ti-6Al-4V, содержащих от 45 до 50 об.% волокон B/SiC диаметром 140 мкм [5]. Хотя корреляция параметров изготовления со структурой поверхности раздела была неполной, последовательное увеличение температуры горячего прессования приводило к росту толщины слоя продукта реакции на поверхности раздела. Продолжительность прессования была постоянной (30 мин), а давление выбирали таким, чтобы при каждой температуре обеспечить прочную диффузионную сварку композита. На каждом режиме обрабатывали четыре образца; усредненные результаты этих испытаний, а также результаты некоторых многократных испытаний на поперечную прочность приведены на рис. 14. Хотя в испытаниях на поперечную прочность влияние поверхности раздела непосредственно не оценивалось, их результаты приведены потому, что значения деформации разрушения разупрочненных композитов, полученных прессованием при 1144 К и 1172 К, совпадают со значениями, предсказанными для поверхности раздела титан—карбид кремния.

Для оценки прочности композитов (слоистых и ориентированных волокнистых) при любых сочетаниях напряжений Ацци и Цай [2] применили критерий начала пластического течения Хилла. Для расчета зависимости прочности композита при одноосном нагружении ок от угла между направлением нагружения и волокном необходимо определить продольную и поперечную прочность композита, а также прочность при сдвиге. Эта теория, в отличие от рассмотренных ранее, является феноменологической и, следовательно, не ограничена каким-либо определенным механизмом разрушения. Авторами работы [2] предложена следующая зависимость ак от 0:

Влияние прочности поверхности раздела на поперечную прочность композита рассматривали Купер и Келли [5]; они получили верхнее и нижнее предельные значения для случаев слабой и прочной поверхностей раздела. За нижнее предельное значение они тоже принимали прочность матрицы, в которой волокна заменены отверстиями. Если матрица стеснена и пластическое течение уменьшает концентрацию напряжений, то это условие выпол-

Рис. 5. Влияние объемной доли волокон на относительную поперечную прочность композита при различных значениях прочности поверхности раздела [5].

обще говоря, отличаться от напряжений, приложенных к образцу композита. Поэтому а, вероятно, лучше определить как величину поперечных напряжений, которые необходимо приложить к композиту, чтобы в данных условиях испытания разрушение происходило по поверхности раздела или путем расщепления волокон. Кроме того, в модели Купера и Келли при выводе выражения для ак предполагалось, что при разрушении матрицы и поверхности раздела напряжения, согласно правилу смеси для случая равных деформаций, аддитивны; реальное напряженное состояние может быть гораздо более сложным. Далее необходимо подчеркнуть, что кривая сгг=0 на рис. 5 не обязательно соответствует поставленному Купером и Келли условию, согласно которому необходимые для отделения матрицы от волокна напряжения равны нулю. В действительности эта зависимость характеризует прочность композита, в котором прочность поверхности раздела или поперечная прочность волокна меньше прочности матрицы, не связанной с волокнами (или—-для модели Купера и Келли — матрицы, в которой волокна заменены отверстиями). Это уточнение иллюстрирует рис. 6, где сгм характеризует прочность матрицы или прочность композита, в котором не разрушаются ни волокна, ни поверхность раздела, т. е. верхнее предельное значение поперечной прочности, а аи — прочность матрицы, не связанной с волокнами (или ма'три-цы, в которой волокна заменены отверстиями), т. е. нижнее предельное значение поперечной прочности. Штриховая кривая на рис. 6 показывает, что композиты с aiycr,>UM,TO величина а, будет влиять на поперечную прочность композита. Если aj>aM, то разрушаться будет матрица, и поперечная прочность композита будет равна поперечной прочности матрицы (с учетом концентрации напряжений и стеснения матрицы).

определяется в основном расщеплением проволоки, а не разрушением поверхности раздела, а при испытании под углом 45° разрушение носит сложный характер, но частично происходит по поверхности раздела. При испытании композита пр.и 1477 К разрушение по поверхности раздела лимитирует и поперечную прочность, и прочность, соответствующую углу нагружения 45°. Если поверхность раздела упрочнена предварительной термической обработкой, то прочность определяется расщеплением проволоки или разрушением в зоне диффузионной пористости вблизи поверхности раздела. Однако упрочнение поверхности раздела предварительным отжигом приводит к повышению прочности композита при внеосном нагружении.

виях растяжения. При испытаниях под углами 60 и 90° разрушение происходит в основном не по> поверхности раздела, а путем расщепления волокон, и, значит, при данных условиях испытания прочность поверхности раздела превышает поперечную прочность волокна. Расщепление волокон при поперечном растяжении образцов показано на рис. 20. Хотя двух- и четырехслойные образцы обладают примерно одинаковой прочностью при растяжении, они различаются по характеру распределения разрушенных волокон. В образцах большей толщины расщепление волокон происходит по всей ширине рабочей части образца. В таких образцах большей толщины поперечное сечение уменьшается пропорционально сечению расщепленных волокон, и матрица благодаря деформационному упрочнению может взять на себя нагрузку, высвобожденную расщепленным волокном, раньше, чем в данной точке начнется разрушение композита. В более тонких образцах расщепление волокна уменьшает поперечное сечение до такой степени, что композит разрушается раньше, чем матрица оказывается в состоянии компенсировать это уменьшение за счет деформационного упрочнения.

При испытании неотожженного композита Ti—борсик в поперечном направлении трещина обычно проходит через волокна, а не по поверхности раздела (рис. 22). Значит, и в этом композите прочность поверхности раздела больше поперечной прочности волокна. Однако после отжига при 1144 К в течение 1,5 ч этот композит, как и рассмотренный ранее, разрушается по поверхности раздела. Трещины проходят, по-видимому, по зоне взаимодействия или между покрытием (карбидом кремния) и зоной взаимодействия (рис. 23). Тем не менее, как видно из рис. 24, увеличение толщины зоны взаимодействия в результате отжига слабо влияет на поперечную прочность. Эти данные также подтверждают, что поперечная прочность близка к нижнему предельному

х химическо;го взаимодействия на поперечную прочность компо-




Рекомендуем ознакомиться:
Положениями коромысла
Положениями равновесия
Положения электрода
Положения движущейся
Положения кривошипа
Положения мгновенного
Положения определения
Положения отверстия
Подвижной поперечиной
Положения поверхностей
Положения рассматриваемой
Положения соответствующие
Положения трубопровода
Положением относительно
Положение динамического
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки