Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Предшествующего нагружения



ханических испытаний образцов, изготовленных из исследуемого материала. Для определения прочности при статических нагрузках образцы испытывают на растяжение, сжатие, изгиб и кручение. Испытания на растяжение — обязательны. Прочность при статических нагрузках оценивается временным сопротивлением ап и пределом текучести оу, а„ — это условное напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца; стт — напряжение, при котором начинается пластическое течение металла. На рис. 1.4 представлен типовой образец прямоугольного сечения для испытаний на растяжение.

Дальнейшее повышение нагрузки вызывает более значительную пластическую деформацию во всем объеме металла. Напряжение, отвечающее наибольшей нагрузке, предшествующей разрушению образца, называют временным сопротивлением или пределом прочности ав (рис. 40).

Данное напряжение получено для идеальной кристаллической структуры. Реальные же значения разрушающих напряжений на несколько порядков меньше. Теория дислокации позволяет объяснить это противоречие. В современных трактовках используется представление о том, что зарождение трещин является результатом сильной локальной концентрации напряжений, чаще всего у дислокационных конфигураций, формирующихся в процессе предшествующей разрушению пластической деформации, в результате реальные значения разрушающих напряжений оказываются гораздо меньше, чем полученные по выражению (2.1.2) [25].

Каждый из трех типов деформации характеризуется соответствующими критериями разрушения. Применимость того или иного критерия зависит от общей деформации, предшествующей разрушению. Области применимости критериев представлены заштрихованными зонами под диаграммой деформирования (рис. 3.2). Для первой зоны (до точки А) характерно однопараметрическое описание поля напряжений в вершине трещины. При этом для каждого из трех видов деформации параметрами являются коэффициенты интенсивности напряжений Kj, KH, Кщ. Разрушение наступает в момент достижения одного из параметров (или их комбинации) некоторого критического уровня, например, Kj = К1с, где К1с — критическое значение коэффициента интенсивности напряжений или вязкость разрушения для трещин нормального отрыва. При этом пластическая деформация в вершине трещины должна быть минимальной.

Данное напряжение получено для идеальной кристаллической структуры. Реальные же значения разрушающих напряжений на несколько порядков меньше. Теория дислокации позволяет объяснить это противоречие. В современных трактовках используется представление о том, что зарождение трещин является результатом сильной локальной концентрации напряжений, чаще всего у дислокационных конфигураций, формирующихся в процессе предшествующей разрушению пластической деформации, в результате реальные значения разрушающих напряжений оказываются гораздо меньше, чем полученные по выражению (2.1.2) [25].

Критерии прочности: временное сопротивление св (МПа) — отношение наибольшей нагрузки, предшествующей разрушению образца, к площади его начального поперечного сечения; предел текучести (физический) стт (МПа) — отношение наименьшей нагрузки, лри которой образец деформируется без заметного ее увеличения, к площади его начального поперечного сечения; условный предел текучести о0>г (МПа) — отношение нагрузки, при которой остаточное удлинение составляет 0,2 % длины расчетного участка образца, к площади его начального поперечного сечения.

Критерии прочности: временное сопротивление сгв (МПа) — отношение наибольшей нагрузки, предшествующей разрушению образца, к площади его начального поперечного сечения; предел текучести (физический) сгт (МПа) — отношение наименьшей нагрузки, при которой образец деформируется без заметного ее увеличения, к площади его начального' поперечного сечения; условный предел текучести а0)2 (МПа) — отношение нагрузки, при которой остаточное удлинение составляет 0,2 % длины расчетного участка образца, к площади его начального поперечного сечения.

Каждый из трех типов деформации характеризуется соответствующими критериями разрушения. Применимость того или иного критерия зависит от общей деформации, предшествующей разрушению. Области применимости критериев представлены заштрихованными зонами поддиаграммой деформирования (рис. 3.2). Для первой зоны (до точки А) характерно однопараметрическое описание поля напряжений в вершине трещины. При этом для каждого из трех видов деформации параметрами являются коэффициенты интенсивности напряжений Kt, Кп, Кш. Разрушение наступает в момент достижения одного из параметров (или их комбинации) некоторого критического уровня, например, Kj = К1с, где К1с — критическое значение коэффициента интенсивности напряжений или вязкость разрушения для трещин нормального отрыва. При этом пластическая деформация в вершине трещины должна быть минимальной.

Теория Гриффитса в оригинальной форме удобна для хрупких тел. В случае пластичных металлов размер готовых трещин, удовлетворяющих критерию Гриффитса (5.2), должен достигать нескольких миллиметров, что на практике редко встречается. А. В. Степанов [377] предположил, что такие трещины в металлах зарождаются в процессе пластической деформации, предшествующей разрушению 1. Оро-ван [378] и Ирвин [379] модифицировали теорию Гриффитса для случая разрушения более пластичных материалов и показали, что соотношение (5.2) будет справедливо, если в нем параметр поверхностной энергии YO заменить на параметр эффективной поверхностной энергии 7эф, который учитывает пластическую деформацию, предшествующую разрушению. В последующих работах [380] было показано, что эффективная поверхностная энергия является температурнозависимой характеристикой, в интервале температур хрупко-пластичного перехода изменяется на 2 — 3 порядка и имеет единую с пределом текучести тер-моактивационную природу.

Часто вид разрушения устанавливают по величине пластической деформации, предшествующей разрушению; хрупкому разрушению не предшествует пластическая деформация. Вязкое разрушение связывают со значительной пластической деформацией. Однако при таком подходе нередки несоответствия энергетических затрат собственно на разрушение с величиной пластической деформации. Возможны случаи, когда хрупкое разрушение (сколом) происходит после значительной пластической деформации, в то же время разрушение пластичных металлов, также претерпевших большую деформацию, часто не требует больших затрат энергии. Высокопрочные современные материалы, разрушаясь вязко, не обнаруживают высоких пластических свойств.

Значительное увеличение предшествующей разрушению пластической деформации вызывает вытягивание зерен, что приводит к преимущественному росту межзеренных трещин иной разновидности — расслаивающих (рис. 5.11, е), ориентированных вдоль оси образца, причем поперечные растягивающие напряжения, возникающие при появлении шейки, способствуют этому процессу. Продольные расслаивающие трещины ограничивают рост поперечных межзеренных трещин, в результате чего доля межзеренного разрушения в изломе будет уменьшаться, несмотря на общий рост вязкости разрушения.

характера и величины усталостных микрополосок в зависимости от программы предшествующего нагружения [130].

Данная система уравнений, предложенная в работе [98], отличается от рассматривавшихся ранее [14, 152] наличием дополнительного параметра max Г, который численно равен максимальному значению интенсивности касательных напряжений за весь период предшествующего нагружения.

Анизотропное упрочнение первоначально изотропного материала отличается зависимостью сопротивления деформированию от ориентации тензора скорости деформации по отношению к тензору упрочнения в процессе предшествующего деформирования, и кривая интенсивность напряжений — интенсивность деформаций зависит от пути нагружения. В статических испытаниях анизотропное упрочнение наиболее рельефно проявляется в возникновении «следа запаздывания» за угловой точкой билинейного пути нагружения. Изменение сопротивления в зависимости от пути импульсного нагружения является основой импульсной обработки материала с целью направленного формирования его характеристик прочности и пластичности. Представление анизотропного упрочнения как результата суммирования изотропного упрочнения и кинематического (связанного с изменением пути предшествующего нагружения) [430] позволяет описать поведение материала при сложном нагружении.

Таким образом, построение определяющих уравнений состояния требует установления функциональной связи между процессами нагружения и деформирования с учетом истории нагружения и основано на экспериментальном исследовании: связи процессов нагружения и деформирования при одном напряженном состоянии (растяжение, сжатие или сдвиг); связи .лш1енс_ивно.стей__н_апряжений и деформаций с учетом влияния уровня средних напряжений;^^збт^о1!й?"упрТ5Чнения~в~~зависи"-мости от пути предшествующего нагружения (см. рис. 1). Связь процессов нагружения и деформирования наиболее надежно определяется по результатам квазистатических испытаний, как правило, на растяжение — сжатие или кручение (сдвиг) путем сопоставления мгновенных значений напряжений и деформаций, характеризующих состояние определенного объема материала.

В настоящее время определяющих уравнений состояния, позволяющих описать реологическое поведение материалов с учетом режима нагружения, нет, поэтому для выполнения расчетов используются упрощенные модели материала [153, 225, 323], неотражающие всей сложности поведения материала в процессе-деформации и, следовательно, применимые для ограниченного диапазона условий нагружения. Успехи в построении уравнений состояния на основе физических механизмов пластической деформации, например на основе дислокационной модели пластического течения [74, 175, 309], имеют ограниченное значение. Зависимость сопротивления деформации от мгновенных условий нагружения (температура, скорость деформации и др.) и всей истории предшествующего нагружения, которая определяет изменение в процессе деформирования большого числа параметров, характеризующих микро- и макроструктуру материала, за исключением некоторых частных случаев, не позволяет в настоящее время дать количественную оценку инженерных характеристик сопротивления материала.

2. Феноменологическое поведение материала под нагрузкой определяется структурным состоянием материала и мгновенными условиями нагружения в момент измерения. Изменение структурного состояния в процессе нагружения является результатом взаимодействия процессов деформационного упрочнения и релаксации во времени. Зависимость кривой деформирования от пути предшествующего нагружения (истории нагружения) обусловлена изменением структурного состояния материала в соответствии с соотношением процессов упрочнения и релаксации.

ветствующей экспериментальной проверки чувствительности материала к истории предшествующего нагружения. Заметим, что если для материала справедливо уравнение состояния (1.8), то при различных режимах испытания не может выполняться

(а, е, t) и (а, е, t) характеризуют поведение материала только при режиме нагружения, близком к режиму испытаний. Обобщение результатов испытаний при различных режимах нагружения требует учета мгновенных условий и истории предшествующего нагружения.

..., рт, еп), т. е. влияние истории предшествующего нагружения обусловлено ее влиянием на изменение структуры материала.

Эта зависимость сопротивления от мгновенной величины и скорости пластического сдвига не учитывает влияния истории предшествующего нагружения. Так как высокоскоростная деформация по результатам экспериментальных исследований приводит к повышенному упрочнению, а значит и к более высокой плотности дефектов кристаллической решетки по сравнению с аналогичной деформацией при меньшей скорости, коэффициент размножения зависит от уровня действующих напряжений или связанной с ним скорости пластического сдвига
В общем случае структурное состояние материала определяется всей историей предшествующего нагружения, влияние которой существенно- зависит от температурно-скоростных условий деформирования. Эти условия при испытаниях с постоянной




Рекомендуем ознакомиться:
Поверхностное легирование
Поверхностное сопротивление
Потенциал плотность
Поверхностного пароохладителя
Поверхностного разрушения
Поверхностному натяжению
Поверхностном подогревателе
Поверхностно обработанных
Поверхностную концентрацию
Повернуть относительно
Повернутой относительно
Поворачиваться относительно
Поворотные механизмы
Потенциал сдвигается
Поворотных устройств
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки