Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Повышенной коррозионной



В зоне термического влияния некоторых жаропрочных аусто-шгпшх сталей под действием термического цикла сварки снижаются пластические и прочностные свойства, что может повести к образованию в этой зоне трещин. Подобные изменения свойств основного металла вызываются развитием диффузионных процессов, приводящих к повышенной концентрации в металле около-шовной зоны элементов (углерода, кислорода и др.), которые совместно с вредными примесями могут образовывать легкоплавкие эвтектики. При длительной эксплуатации в :пч и зоне могут выделяться мелкодисперсные карбиды п имтерметаллиды, коагуляция которых приводит также к о.чрупчпваниго металла. При сварке этих сталей для предупреждения образования горячих трещин в шве часто получают металл шва, по составу отличающийся от основного и имеющий двухфазную структуру.

Начальный период старения (назовем его первой стадией старения) заключается в том, что в пересыщенном твердом растворе атомы второго компонента (в данном случае атомы меди), расположенные в свежезакаленном сплаве в случайных местах, собираются в определенных местах кристаллической решетки. В результате этого процесса внутри кристалла образуются зоны повышенной концентрации растворенного компонента, так называемые зоны Гинье-Престона2 (зо>ны Г. П.).

Атомы меди на этой стадии старения из раствора не выделились, поэтому среднее значение параметра решетки не изменилось. Однако в местах повышенной концентрации второго компонента параметр должен быть иной, чем в обедненных местах, это создает большие напряжения в кристалле и дробит блоки мозаики, что и приводит к повышению твердости.

Катодные включения (например, Си, Pd) заметно повышают коррозионную стойкость железоуглеродистых сплавов в атмосфере даже при незначительном их содержании (десятые доли процента меди — рис. 272). В процессе коррозии медистой стали в электролит (увлажненные продукты коррозии) переходит и железо, и медь, но ионы последней, являясь по отношению к железу катодным деполяризатором, разряжаются и выделяются на его поверхность в виде мелкодисперсной меди. Медь является весьма эффективным катодом и при определенных условиях, например, при повышенной концентрации окислителя — кислорода у поверхности металла, что имеет место при влажной атмосферной коррозии, и отсутствии депассивирующих ионов, способствует пассивированию железа

Нахлестанное соединение. Выполняется с помощью угловых швоп (рис. 3.5). В зависимости от формы поперечного сечения различают угловые швы: нормальные 1, вогнутые 2, выпуклые 3. На практике наиболее распространены нормальные швы. Выпуклый шов образует резкое изменение сечения деталей в месте соединения, что является причиной повышенной концентрации напряжений. Вогнутый шов снижает концентрацию напряжений и рекомендуется при действии переменных нагрузок. Вогнутость шва достигается обычно механиче-

Принято считать, что с увеличением окислительной способности среды облегчается наступление пассивного состояния многих металлов и сплавов. Это, в частности имеет место для алюминия и сплавов железо — хром при повышенной концентрации азотной кислоты. Однако в ряде случаев при чрезмерном повышении окислительно-восстановительного потенциала запас:ивированный материал теряет свою пассивность и переходит в активное состояние. В работах Г. В. Акимова, В. П. Батракова и М. М. Куртепова показано, что скорость коррозии запассивированного железа и нержавеющих сталей в азотной кислоте возрастает в области концентраций выше 85—90%, как это видно из рис. 25 и 26. Это явление нарушения пассивности нержавеющих сталей и железа в сильно окислительных средах получило название1 перепассивации или транс-пассивности.

расширение области у-фазы и сужение области существования ct-фплы (рис. 81, а). Как видно из рис. 81, под влиянием легирующих элементов точка Л4 повышается до линии солидус, а точка Л3 при повышенной концентрации легирующего элемента снижается до комнатной температуры. Следовательно, сплавы, имеющие концентрацию легирующего элемента больше указанной на рис. 81 (точка ,v), пе испытывают фазовых превращений а +±. у, и при всех температурах представляют твердый раствор легирующего элемента в у-железе. Такие сплавы называют аустенитными.

Наиболее высокой и равномерной охлаждающей способностью отличаются холодные 8—12 %-ные водные растворы NaCl и NaOH, которые хорошо зарекомендовали себя на практике. Для стали с низкой критической скоростью закалки рекомендуются растворы NaOH повышенной концентрации (30—50 %).

Так, на I стадии старения в пересыщенном твердом растворе А1 атомы Си (ранее стихийно расположенные в сплаве А1—Си после его закалки — рис. 18.7,а) начинают концентрироваться в кристаллической решетке с определенной закономерностью (рис. 18.7,6), вследствие чего в кристаллах возникают участки повышенной концентрации Си, получившие название зон Гинье — Престона (по имени ученых А. Гинье и Ж. Престона).

На этой стадии атомы Си еще не выделяются из а-твердого раствора и среднее значение параметра кристаллической решетки (0,255 нм) остается неизменным. Но поскольку на участках повышенной концентрации Си параметр решетки существенно меняется, это приводит к возникновению значительных напряжений в кристаллах, раздроблению блоков мозаичной структуры и увеличению твердости .

Из двухступенчатых редукторов наибольшее распространение имеют редукторы по развернутой схеме (рис. 10.37,6). Эти редукторы наиболее просты. Они имеют наименьшую ширину, но несимметричное расположение колес на валах приводит к повышенной концентрации нагрузки по длине зуба. Поэтому такие редукторы требуют жестких валов. Указншшй недостаток больше сказывается при закаленных до высокой твердости колесах и неравномерной нагрузке (приработка затруднена).

В настоящее время гибкие трубопроводы находят широкое применение в нашей стране при решении многих вопросов, связанных с ускоренной разработкой морских месторождений нефти и газа. Это связано с рядом присущих им качеств, дающих значительные преимущества при шельфовой добыче и транспорте углеводородного сырья перед жесткими трубопроводами. Среди их главных достоинств следует выделить гибкость, позволяющую осуществлять соединение подводного устьевого оборудования с контрольными линиями, связь между плавучими структурами, подачу сырой нефти или газа на загрузочные терминалы, использование при разработке малопроизводительных месторождений. При этом облегчаются укладка и адаптация трубопроводных систем к специфическим условиям морской добычи. Кроме того, появляется возможность повторного использования трубопроводов. При подборе соответствующих материалов и рациональных методов сочленения гибкие трубопроводы позволяют транспортировать по ним среды повышенной коррозионной агрессивности. За рубежом такие трубопроводные системы в определенном конструктивном решении интенсивно разрабатываются и внедряются, в частности, французской фирмой "Кофлексип". В нашей стране также существует ряд предприятий, достигших больших успехов в деле создания гибких трубопроводных систем на основе ТГО, находящих широкое применение в различных отраслях промышленности, но, к сожалению, несмотря на отмеченные достоинства, пока недостаточно представленных в нефтегазовых отраслях. При этом эффективное использование гибких металлических трубопроводов, их надежность и долговечность во многом определяют работоспособ-

В настоящее время для изготовления ГМР и компенсаторов широко используются конструкционные материалы, имеющие различную природу и коррозионную стойкость, такие, как нержавеющие хромоникелевые сплавы, жаропрочные сплавы на никелевой основе, сплавы титана, к которым предъявляются требования повышенной коррозионной стойкости и сопротивляемости усталостному разрушению, а также определенные технологические требования (пластичность, удовлетворительная свариваемость). Исходя из предпосылки о коррозионно-механической природе разрушения ГМР и компенсаторов, были проведены сравнительные кор-розионно-усталостные испытания хромоникелевой нержавеющей стали 12Х18Н10Т (18-10) и сплава на никелевой основе 12Х25Н60В15 с целью выбора материала повышенной долговечности при работе в различных коррозионно-активных средах (совместно с С.Н. Давыдовым). При этом в качестве последних были выбраны электролиты, обусловливающие различное электрохимическое поведение исследуемых сплавов: дистиллированная вода, в которой стали находятся в устойчивом пассивном состоянии; 3 %-ный раствор хлорида натрия, имитирующий пластовые воды и атмосферу морского климата, в котором возможно локальное нарушение пассивности сплавов за счет питтингообразования при наличии хлор-ионов: 60 %-ный раствор азотной кислоты как энергичный окислитель, в котором материалы находятся в области активного растворения. Причем все перечисленные среды в той или иной степени моделируют основные натурные транспортируемые продукты (обводненную нефть и нефтепродукты - топливо, масло, специальные синтетические жидкости; сжатый воздух).

S качестве исследуемых материалов были выбраны плоские тонколистовые образцы аустенитной коррозионно-стойкой стали 12Х18Н10Т как основного материала ГМР и компенсаторов, а также титанового сплава ВТ 1-0 в связи с его высокой удельной прочностью и повышенной коррозионной стойкостью (вырезаны вдоль прокатки). Усталостные испытания проводили (совместно с Д.Е. Бугаем) путем симметричного перегиба образцов вокруг шаблонов, обеспечивающих заданную амплитуду деформации (порядка 0,005), при частоте нагружения 50 циклов в минуту. В качестве модельной коррозионно-активной среды используется 3 %-ный раствор хлорида натрия, вызывающий локальную депассивацию указанных сплавов. Испытания проводились по специальной программе, предусматривающей после наработки заданного числа циклов нагружения проведение рентгенографических, электрохимических и электронно-микроскопических исследований, а также определение микротвердости с целью установления взаимосвязи между получаемыми с помощью этих методов исследования параметрами. В частности, для оценки уровня накопленных микродеформаций кристаллической решетки сплавов проводился рентге-ноструктурный анализ поверхностных слоев металлов на рентгеновском дифрактометре ДРОН-2,0 в отфильтрованном излучении

Углеграфитовые материалы используют в качестве электродов, нагревателей, торцовых уплотнителей. В зависимости от условий эксплуатации к соединению углеграфитовых материалов с металлами предъявляются требования достаточной прочности (по углеграфитовому элементу), герметичности, малого электросопротивления в зоне контакта, в ряде случаев повышенной коррозионной стойкости. Диэлектрики в электронных микросхемах служат в качестве подложки, на которую в вакууме наплавляют тонкие металлические пленки, к которым затем присоединяют металлические проводники. В качестве диэлектриков используют ситаллы различных марок: фотоситаллы, кварцевое стекло, стекла С41, на которые в вакууме напыляются медные пленки толщиной 4000—4500 А по адгезионному подслою хрома или титана толщиной 500 А.

Таким образом, следует считать, что минимальное содержание хрома в малоуглеродистых хромистых сталях, обладающих коррозионной стойкостью в агрессивных средах, должно быть не менее 13—15%. Коррозионная стойкость хромистых сталей в значительной степени зависит от содержания в них углерода. Так, в сталях, содержащих 13—15% Сг, наблюдается резкое разбла-гораживание потенциала при содержании углерода 0,3—0,4%. Чем больше содержание углерода в сплаве, тем больше хрома расходуется на образование карбидов и тем больше обедняется твердый раствор хромом. Сталь 1X13 при прочих равных условиях имеет более высокую коррозионную стойкость, чем сталь 2X13, а последняя обладает повышенной коррозионной стойкостью по сравнению со сталью 3X13 и т. д.

В Советском Союзе распространены две марки железокрем-нистых -сплавов (кремнистых чугунов), различающиеся содержанием кремния и углерода: С15 (0,5—0,8% С, 14,5—15% Si) и С17 (0,3—0,8% С, 16,0—18,0% Si). Чем больше в сплаве кремния, тем меньше должно быть углерода. Оптимальное содержание углерода соответствует эвтектическому составу для данного сплава. Благодаря большому сродству кремния к железу, углерод не дает карбидов железа. Сплав С17 применяется в тех случаях, когда требуются отливки с повышенной коррозионной стойкостью.

К двухфазным сплавам титана, обладающим повышенной коррозионной стойкостью, относятся сплавы Ti — Та. При содержании тантала в сплаве выше 1% имеет место заметное повыше-

Для литья применяют сплавы систем: А11—Си; А1—Zn; Al—Mg; Al—Si; Al—Си—Si; Al—Zn-Si (табл. 11). Наиболее прочны сплавы Al—Mg; однако их литейные свойства невысокие. Сплав АЛО повышенной коррозионной стойкости и жаропрочности используют для изготовления термически напряженных деталей. Для отливок несложной формы широко применяют сплавы АЛ7 и АЛ 19.

Кольца, нуждающиеся в повышенной коррозионной стойкости, делают из коррозионно-стойких сталей типа 30X13 и бериллиевой бронзы БрБ2. Для изготовления колец, работающих при повышенных температурах, применяют хромокремневанадиевые и кремневольфрамовые стали.

Наплавка — это нанесение с помощью сварки слоя металла на поверхность изделия. Наплавочные работы выполняют для восстановления размеров изношенных деталей (ремонтная наплавка, восстановительная наплавка) и при изготовлении новых изделий наплавкой на их поверхность слоев металла с особыми свойствами, например с повышенной коррозионной стойкостью, износостойкостью, жаростойкостью, жаропрочностью.

К общим методам относятся использование материалов с повышенной коррозионной стойкостью, уменьшение напряженного сое-




Рекомендуем ознакомиться:
Практического приложения
Повышается долговечность
Практическую подготовку
Практикой установлено
Правильных геометрических
Повышается износостойкость
Правильная установка
Правильной конструкции
Правильной технологии
Правильное чередование
Правильное построение
Правильное сочетание
Правильного функционирования
Правильного направления
Правильного представления
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки