Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Поверхности контактирующей



Очень часто чистовая отделка отверстий производится методом тонкого растачивания. Сущность этого способа заключается в том, что растачивание производится при большой скорости, малой глубине резания и малой подаче. Кроме алмазных резцов для растачивания применяют резцы с пластинками твердых сплавов, которые также дают хорошие результаты в отношении шероховатости и точности обработанной поверхности. Конструкции станков для алмазного раста-

3) нанесение на поверхность катодных металлов покрытий из металлов, не опасных с точки зрения контактной коррозии (например, цинкование, которое еще лучше осуществить на всей поверхности конструкции), или электроизолирующего покрытия например, фосфатирование поверхности с последующей окраской);

Ранее было указано, что на скорость коррозии металлов оказывает влияние и характер обработки поверхности конструкции. Экспериментально было установлено, что гладкая поверхность металла по сравнению с грубой, шероховатой, обладает большей стойкостью к коррозии. Гладкая поверхность металла имеет меньше различных дефектов в виде зазоров, царапин и т. д., которые могут явиться причиной образования очагов коррозии. Так, например, поверхности, грубо обработанные резцом, могут подвергаться более сильной коррозии вследствие того, что к поверхности металла, лежащего в углублении рисок, будет поступать меньше кислорода, чем к участкам, лежащим на гребнях; поэтому в случае нейтральной или щелочной среды, когда процесс коррозии металла идет с кислородной деполяризацией, на участках с большей концентрацией кислорода (гребни) потенциал будет более положителен, чем на участках с меньшей концентрацией кислорода (углубление), и вследствие дифференциальной аэрации возникает коррозионный микроэлемент.

Однако в силу конструктивных особенностей обследуемых аппаратов (прежде всего значительные поверхности и большая протяженность сварных швов) практически невозможно осуществить диагностический контроль всей поверхности конструкции или сварных швов.

Оперативная оценка размеров областей водородных расслоений металла в любом сечении, нормальном срединной поверхности конструкции, может быть выполнена графически. При проведении диагностики эксплуатировавшегося оборудования, в металле которого методами ультразвукового контроля (УЗК) обнаружены участки с водородными расслоениями, необходимо выявить наиболее опасные из них. На основании результатов УЗК или других методов неразрушающего контроля устанавливают границы водородных расслоений и их местоположение по высоте. Оценивают степень поражения конструкции, определяют области изолированных и взаимодействующих водородных расслоений.

Значения параметров функции распределения (12) зависят от степени неравномерности повреждения поверхности конструкции и от метода измерений глубин разрушений, но не зависят от площади поверхности, подвергшейся коррозии. Величина же максимальной глубины повреждения зависит от размеров поверхности.

Расчетные методы прогнозирования ресурса оборудования допускают различные подходы в зависимости от базы данных и требуемой точности. Простейшим является детерминистический подход, который предполагает, что достаточно иметь представление о скорости изменения толщины стенки объекта и длительной прочности металла. Этот подход применим, если те или иные процессы протекают равномерно и не зависят от исходного состояния системы. Тогда расчет ресурса оборудования можно провести, основываясь на информации, получаемой при лабораторных и стендовых испытаниях образцов или путем наблюдения какого-либо одного участка поверхности конструкции.

В силу этих конструктивных особенностей практически невозможно осуществить диагностический контроль всей поверхности конструкции или всех сварных швов. Следовательно, можно говорить только о выборочном текущем контроле состояния объекта. Другими словами, состояние объекта оценивается в условиях весьма ограниченного объема данных. Методологические основы таких оценок либо вовсе отсутствуют (и тогда их заменяют опыт и интуиция специалистов), либо зачастую не соответствуют масштабу и важности задачи.

Влияние температурного фактора определяется не только значением рабочей температуры, но и характером и динамикой теплового воздействия. При нестационарном тепловом нагружении возможна термическая усталость материала конструкции. Динамические тепловые нагрузки могут быть обусловлены периодическим характером технологического процесса, изменениями рабочих параметров в период пуско-наладочных и ремонтных работ, а также вследствие неоднородного распределения температуры по поверхности конструкции. Тепловые поля в той или иной степени нестационарны, и их изменение приводит к соответствующему перераспределению упругих и пластических деформаций в объеме напряженного металла. Таким образом, номинально статическое тепловое на-гружение в действительности может иметь динамическую составляющую. В микроаспекте разрушения термоусталость рассматривается как весьма сложный процесс, включающий в себя эволюцию дислокационной структуры, изменение физических и механических свойств материала [51, 52].

Многие объекты эксплуатируются при повышенных температурах. С одной стороны, этот фактор способствует уменьшению вероятности возникновения хрупкого разрушения, поскольку обычно объекты эксплуатируются при рабочих температурах, значительно превышающих порог хладноломкости. С другой стороны, интенсивное тепловое воздействие может привести к развитию различных деградационных процессов в материалах, из которых изготовлена конструкция и, как следствие, к их термическому повреждению. Влияние температурного фактора определяется не только значением рабочей температуры, но и характером и динамикой теплового воздействия. При нестационарном тепловом нагружении возможна термическая усталость материала конструкции. Динамические тепловые нагрузки могут быть обусловлены периодическим характером технологического процесса, изменениями рабочих параметров в период пуско-наладочных и ремонтных работ, а так же вследствие неоднородного распределения температур по поверхности конструкции. Тепловые поля в той или иной степени нестационарны, их изменение приводит к соответствующему перераспределению упругих и пластических деформаций в объеме напряженного металла [17, 30].

Контактная коррозия возникает не только при соприкосновении металлов, но также в присутствии в электролите ионов более благородного металла. В местах их осаждения на поверхности конструкции тоже может произойти контактная коррозия.

вающейся окалины, ржавчины и других загрязнений, и в покрытии очищенной поверхности контактирующей средой.

В ЧССР ежегодно производится около 300 тыс. т стальных конструкций. В это число входят разные типы конструкций (от наилегчайших до наиболее тяжелых), которые по площади поверхности, контактирующей с коррозионной средой, можно разделить на три категории {4]:

• гладкость поверхности, контактирующей с К, одинакова или лучше, чем гладкость поверхности;

Некоторые зарубежные фирмы, например "Бабкок" (ФРГ), упрочняют и придают противокоррозионные свойства штокам путем газовой наплавки поверхности, контактирующей с сальниковой набивкой, кобальтовым стеллитом толщиной до 3 мм и твердостью до 440 кгс/мм2 по Виккерсу.

Ультразвуковая дефектоскопия (УЗД) - один из наиболее эффективных методов неразрушающего контроля. Дефектоскопия основана на принципе передачи и приема ультразвуковых импульсов, отражаемых от дефекта, расположенного в металле. Высокочастотные звуковые волны распространяются по сечению контролируемой детали или узла направленно и без заметного затухания, а от противоположной поверхности, контактирующей с воздухом, полностью отражаются. Для возбуждения и приема колебаний используются прямой и обратный пьезоэлектрический эффекты титаната бария (кварца). Генератор электрических ультразвуковых колебаний возбуждает пьезоэлектрический излучатель (передающий щуп), который через слой жидкости связан с поверхностью детали. Механические колебания, полученные от действия переменного магнитного поля на пьезоэлектрическую пластинку излучателя, распространяются по толще металла и достигают противоположной стороны сечения. Отражаясь, возвращаются и через жидкую среду возбуждают в пьезоэлектрическом приемнике (приемном щупе) электрические колебания, которые после усиления высвечивают на индикаторе характер прохождения колебаний. Бели препятствий, мешающих прохождению колебаний, не оказалось, амплитуды прямого и отраженного импульсов одинаковы. При наличии дефекта импульсных пиков будет три, причем отраженный от дефекта - меньший (рис. 4.4). Во время работы дефектоскопа колебания возбуждаются не непрерывно, а короткими импульсами. Существует несколько типов дефектоскопов и наборов щупов.

Деаэрация питательной воды на электрических станциях может производиться также в конденсаторах паровых турбин. Термические деаэраторы обеспечивают необходимую деаэрацию питательной воды при следующих основных условиях: а) подогрев воды до температуры насыщения, соответствующей давлению в деаэраторе, тонкое разделение на струи и разбрызгивание подаваемой воды в целях увеличения ее поверхности, контактирующей с греющим паром. Для большей термической устойчивости рабочее давление в деаэраторе должно поддерживаться в пределах ОДб—0,25 кГ/см2, что соответствует температуре кипения воды 103—104°С; б) тщательное (автоматическое) регулирование количества греющего пара, обеспечивающее постоянное поддержание температуры кипения воды в деаэраторе при заданном давлении в нем « .количестве и температуре подаваемой воды; в) организация рационального движения пара по отношению к подаваемой воде, обеспечивающего их хорошее перемешивание и теплообмен; г) достаточное время пребывания воды в деаэраторе, обеспечивающее полное выделение из воды растворенных газов; д) хорошее удаление выделенных газов из деаэратора (вентиляция его) через открытый воздушник и охлаждение удаляемой паровоздушной смеси для конденсации пара и использования его тепла и конденсата.

Двойной электрический слой (ДЭС) возникает на любой поверхности, контактирующей с водным раствором электролита, либо за счет диссоциации поверхностных ионов твердой фазы, либо за счет адсорбции твердой фазой ионов одного знака из раствора.

Механическое воздействие ультразвуковых волн на процессы накипеобразования определяется и явлениями, возникающими при вибрациях металлической поверхности, контактирующей с котловой водой непосредственно или через слой накипи. К числу этих явлений следует отнести воздействие сил инерции на растущий кристалл, а также разрушающее действие поперечных волн на границе кристаллических связей знакопеременных изгибных усилий, под влиянием которых прочность связи внутри накипи, а также между накипью и металлом нарушается и образуются трещины. Капиллярный эффект, открытый Е. Н. Коноваловым, в десятки раз увеличивает скорость проникновения воды к поверхности нагрева, где она мгновенно испаряется, вызывая вспучивание и отслаивание накипи (рис. 7.4). Отслоившиеся чешуйки скапливаются в нижней части котла и удаляются периодической продувкой.

В процессе работы котла металл барабана может пассивироваться, т. е. на его поверхности может образоваться защитная окисная пленка, являющаяся результатом процесса коррозии, скорость которой со временем уменьшается до нуля. Защитная окисная пленка магнетита образуется на поверхности, контактирующей с водой или водяным паром при температуре выше 230° С. Если в защитной пленке появляются трещины, то они сразу закрываются магнетитом. При дефектной окисной пленке незащищенная стальная поверхность барабана взаимодействует с водой. Однако защитная окисная пленка в месте разрушения восстанавливается не всегда, и в незащищенном месте может происходить непрерывный процесс растворения железа. В месте образования дефектной окисной пленки выносливость котельных сталей при малоцикловом нагружении снижается.

Рис. 78, Концентрация титана, железа и углерода на внешней понерхности (а) н на поверхности, контактирующей с переходной зоной (б), в зависимости от температуры процесса и содержания углерода в стали:

наличие межфазной поверхности, контактирующей с водой (поверхностного слоя), и связанного с этим поверхностного натяжения ст;




Рекомендуем ознакомиться:
Предохраняет поверхность
Предопределяет использование
Предоставляет возможность
Предотвращает возможность
Предотвращения щелочного
Предотвращения коррозионного
Предотвращения образования
Повышения динамической
Поступает одновременно
Повышения жаропрочности
Повышения конструкционной
Повышения квалификации
Повышения начальных
Повышения нефтеотдачи
Повышения пластичности
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки