Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Поверхности остаточных



Большое влияние на качество сварных соединений и экономичность процесса сварки оказывают чистота кромок и прилегающей к ним поверхности основного металла, точность подготовки кромок и сборки под сварку. Заготовки для свариваемых деталей следует изготовлять из предварительно выправленного и зачищенного металла. Вырезку деталей и подготовку кромок осуществляют механической обработкой (на пресс-ножницах, кромкострогаль-ных и фрезерных станках), газокислородной и плазменной резкой и др. После применения тепловых способов резки кромки зачищают от грата, окалины и т. п. (шлифовальными кругами, металлическими щетками и др.).

Применением электродов с фтористокальциевым покрытием, уменьшающим угар легирующих элементов, достигается получение металла шва с необходимым химическим составом и структурами. Уменьшению угара легирующих элементов способствует и поддержание короткой дуги без поперечных колебаний электрода. Это снижает вероятность появления дефектов па поверхности основного металла в результате попадания на него брызг.

Сплавы магния МЛ4, МЛ5 и др. (буква Л указывает на то, что сплавы литейные) используют для получения отливок. Сваркой устраняют дефекты литъя. Эти сплавы имеют повышенную склонность к образованию в швах горячих трещин, пор и усадочных рых-лот. Сплавы на основе магния активно окисляются на воздухе. Пленка собственных окислов магния на поверхности металла рыхлая и непрочная. Поэтому поверхность магниевых сплавов искусственно защищают пленкой из солей хромовой кислоты. По указанной причине перед сваркой с кромок и прилегающей поверхности основного металла (на ширину до 30 мм) травлением или механическим путем тщательно удаляют защитную пленку, окислы и другие загрязнения. После сварки на поверхность сварного соединения вновь наносят защитную пленку.

Флюсы паяльные применяют для очистки поверхности паяемого металла, а также для снижения поверхностного натяжения и улучшения растекания и смачиваемости жидкого припоя. Флюс (кроме реактивно-флюсовой пайки) не должен химически взаимодействовать с припоем. Температура плавления флюса должна быть ниже температуры плавления припоя. Флюс в расплавленном и газообразном состояниях должен способствовать смачиванию поверхности основного металла расплавленным припоем. Флюсы могут быть твердые, пастообразные и жидкие. Для пайки наиболее применимы флюсы: бура Na2B4O7 и борная кислота Н2ВО3, хлористый цинк ZnCl2, фтористый калий KF и др.

При предварительном контроле основного и сварочных матер налов устанавливают, удовлетворяют ли сертификатные данные в документах заводов-поставщиков требованиям, предъявляемым к материалам в соответствии с назначением и ответственностью сварных узлов и конструкций. Осматривают поверхности основного материала, сварочной пррволоки и покрытий электродов в целях обнаружения внешних дефектов. Перед сборкой и сваркой заготовок проверяют, соответствуют ли их форма и габаритные размеры установленным, а также контролируют качество подготовки кромок и свариваемых поверхностей. При изготовлении ответственных конструкций сваривают контрольные образцы. Из них вырезают образцы для механических испытаний. По результатам испытаний оценивают качество основного и сварочных материалов, а также квалификацию сварщиков, допущенных к сварке данных конструкций.

Наплавка порошкообразных материалов производится угольной дугой постоянным током прямой полярности. Для этого небольшая часть очищенной поверхности основного металла подформовывается пластинками из графита, наносится слой прокаленной буры 0,2—0,3 мм и слой порошкообразного материала 3—4 мм.

Изменяя поверхность электродов, можно изменить полярность промежуточного электрода. При увеличении поверхности основного катода его кривая пойдет более полого, и если она пересечет кривую анода в точке, ордината которой соответствует потенциалу, более положительному, чем Е2, промежуточный электрод будет работать анодпо. Таким образом, все факторы,

Взаимодействие металла с газами. При дуговой сварке газовая фаза зоны дуги, контактирующая с-расплавленным металлом, состоит из смеси N2, О2, На, СО2, СО, паров Н2О, а также продуктов их диссоциации и паров металла и шлака. Азот попадает в зону сварки главным образом из воздуха. Источниками кислорода и водорода являются воздух, сварочные материалы (электродные покрытия, флюсы, защитные газы и т. п.), а также окислы, поверхностная влага и другие загрязнения на поверхности основного и присадочного металла. Наконец, кислород, водород и азот могут содержаться в избыточном количестве в переплавляемом металле. В зоне высоких температур происходит распад молекул газа на атомы (диссоциация). Молекулярный кислород, азот-и водород распадаются и переходят в атомарное состояние О25±2О, N25±2N, Н2^±2Н. Активность газов в атомарном состоянии резко повышается.

тывающейся без скольжения по поверхности основного конуса с углом 8Ь при вершине, расположенного в центре сферы. Основной конус и образующая плоскость касаются по радиусу сферы 0В. Точка С начала сферической эвольвенты на поверхности образующего конуса называется предельной. Так как плоскость Q перекатывается по поверхности основного конуса без скольжения, то дуги

При пересекающихся осях вращения звеньев, вращающихся с постоянным передаточным отношением, в качестве сопряженных поверхностей выбирают конические эвольвентные поверхности. Они образуются линиями, расположенными на производящей плоскости Q (рис. 12.2, а), перекатывающейся без скольжения по основному конусу. Прямая М — М, проходящая через вершину основного конуса, описывает теоретическую поверхность прямого конического зуба (рис. 12.2, б), прямая УИр — УИр, не проходящая через вершину конуса, описывает теоретическую поверхность косого (рис. 12.2, б), ломаная линия МрМр'/Ир — шевронного (рис. 12.2, г), кривая MR — MR — теоретическую поверхность криволинейных конических зубьев (рис. 12.2, д). Линия В — В касания производящей плоскости с основным конусом является мгновенной осью вращения этой плоскости относительно основного конуса и осью кривизны производимой поверхности. Плоскость Q нормальна к этой поверхности. Точки линий М — М, Жр — Мр и Мк — MR описывают сферические эвольвенты. Если обкатать производящую плоскость вокруг всей поверхности основного конуса, то сферическая эвольвентная поверхность будет состоять из «зубцов», симметричных плоскости N, перпендикулярной его оси (рис. 12.3). Кривизна эвольвентной конической поверхности при пересечении с этой плоскостью меняет знак, т. е. поверхность имеет перегиб

Важным моментом является выбор схемы контроля. Сварные соединения обычно контролируют наклонными преобразователями с поверхности основного металла. При снятом механической обработкой усилении стыкового шва для обнаружения шлаковых включений и пор прибегают к прямо-

Чувствительность к концентраторам напряжений резко снижается, а предел выносливости возрастает при создании на поверхности остаточных напряжений сжатия путем упрочнения химико-термической или другой обработкой. Коррозия понижает предел выносливости на 40—60 % .

Как правило, при знакопеременной нагрузке трещины усталости возникают на поверхности иод влиянием растягивающих напряжений. При образовании на поверхности остаточных напряжений сжатия они уменьшают растягивающие напряжения от внешней нагрузки, поэтому повышается предел выносливости.

долговечность до зарождения усталостных трещин и во взаимосвязи с деформационными характеристиками всего объема металла определяет уровень предела выносливости, а также уровень порогового коэффициента интенсивности напряжений, необходимого для старта усталостной трещины. Наличие концентраторов напряжений (например, от грубой механической обработки) и других дефектов на поверхности, остаточных напряжений растяжения, агрессивной среды и ряда других факторов приводит к снижению предела выносливости. Как правило, все виды обработки, создающие сжимающие напряжения на поверхности, такие, например, как поверхностное пластическое деформирование, различные виды химико-термических обработок и т.п., повышают предел выносливости металлических материалов, препятствуя раскрытию трещин. На рис. 48 представлены данные по влиянию дробеструйной обработки (с различным размером дроби) на усталость мартенситностарею-щей стали с 1 8%Ni в условиях кругового изгиба. Видно, что дробеструйная обработка вне зависимости от диаметра дроби существенно повышает ограниченную долговечность и предел выносливости. При больших долговсчно-стях образцов с поверхностным упрочнением зарождение усталостных трещин всегда происходит под упрочненным поверхностным слоем.

При знакопеременной нагрузке трещины усталости, как правило, возникают на поверхности под влиянием растягивающих напряжений. При образовании на поверхности остаточных напряжений сжатия они уменьшают растягивающие напряжения, возникающие от внешней нагрузки, и поэтому повышается предел выносливости (см. рис.143).

толщина слоя должна быть больше. Для устранения деформации изделий после цементации нередко проводят шлифование на толщину 0,1—0,25 мм. Это приводит к снижению на поверхности остаточных напряжений сжатия и даже образованию растягивающих напряжений, снижающих a_i. Поэтому после цементации нередко проводят ППД, которое формирует на поверхности детали высокие напряжения сжатия. При циклических нагрузках сопротивление цементо-

добные системы создаются специально по мере необходимости в соответствии с частными задачами, например для проведения натурных усталостных испытаний двигателя гражданского самолета. Можно заметить, что диапазон используемых для усталостных испытаний машин очень широк — от самых простых до чрезвычайно сложных. Очень сложные испытательные системы, используемые, например, для натурных испытаний, позволяют получать данные, применимые лишь для исследуемой конструкции и лишь в условиях, соответствующих условиям проведения испытаний. Результаты, полученные для вполне определенной конструкции и заданных условий, очень точны, однако экстраполировать их на другие условия или на другие изделия очень сложно, если вообще возможно. С другой стороны, данные лабораторных исследований усталости на простых образцах имеют общий характер, их можно использовать при расчетах практически любых изделий из исследованного материала. Однако для применения этих данных на практике требуется умение количественно оценить различия между лабораторными и эксплуатационными условиями, включая эффекты асимметрии нагружения, непостоянства амплитуды напряжения, условий окружающей среды, размеров, температуры, обработки поверхности, остаточных напряжений и т. п. Диапазон осуществляемых усталостных испытаний весьма широк — от простейших испытаний гладких образцов до сложнейших натурных испытаний изделий. Любые испытания полезны и направлены на достижение вполне определенных целей.

Чувствительность к концентраторам напряжений резко снижается, а предел выносливости возрастает при создании на поверхности остаточных напряжений сжатия путем упрочнения химико-термической или другой обработкой. Коррозия понижает предел выносливости на 40—60 %.

Как правило, при знакопеременной нагрузке трещины устало* сти возникают на поверхности под влиянием растягивающих напряжений. При образовании на поверхности остаточных напряжений сжатия они уменьшают растягивающие напряжения от внешней нагрузки, поэтому повышается предел выносливости.

Такие наиболее распространенные виды механической обработки, как точение, фрезерование, шлифование, полирование и т. п., приводят к появлению на поверхности остаточных растягивающих напряжений до 400 МПа и ухудшают стойкость против хлорид-ного КР. Поверхностные трещины возникают даже без внешней нагрузки. Травление и электрополировка, примененные после механической обработки, повышают стойкость против КР, особенно если полностью снимают наклепанный слой. Химическая обработка поверхности отожженных сталей благоприятна после термообработки в окислительной атмосфере, когда

Циклическая прочность зависит от большого числа факторов, из которых решающее значение имеют структура и напряженное состояние поверхностного слоя, качество поверхности и воздействие коррозионной среды. Наличие на поверхности остаточных напряжений сжатия затрудняет образование и развитие трещин усталости и, как следствие, способствует увеличению предела выносливости. Резко отрицательное влияние оказывают напряжения растяжения и многочисленные концентраторы напряжений:

Для обеспечения оптимальных механических свойств глубина закалки должна обеспечивать, с одной стороны, создание на поверхности остаточных напряжений сжатия, увеличивающих сопротивление усталостным нагрузкам и распространению трещины, а с другой — достаточное сопротивление статическим нагрузкам. При увеличении глубины слоя остаточные напряжения сжатия уменьшаются и могут перейти в растягивающие. Но для повышения сопротивления изгибающим нагрузкам глубина слоя должна быть достаточно велика, чтобы рабочие напряжения, уменьшаясь по линейному закону от поверхности к сердцевине, не превысили предела текучести стали в подслое.




Рекомендуем ознакомиться:
Повышения технологичности
Повышения теплостойкости
Повышения влажности
Повышением эффективности
Повышением жесткости
Повышением коэффициента
Повышением начального
Повышением плотности
Повышением температур
Повышением удельного
Повышение эксплуатационных
Повышение быстродействия
Поступательными движениями
Повышение характеристик
Повышение жаропрочности
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки