Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Поверхности разрушение



Машины для кислородной резки обеспечивают получение реза высокой чистоты за счёт постоянства скорости передвижения резака, постоянного расстояния среза мундштука от поверхности разрезаемого металла и отсутствия вибраций резака. После машинной резки можно получить поверхность кромки, имеющую вид строганой или фрезерованной, не требующей дальнейшей обработки.

Переносная машина для резки специально по шаблону изображена на фиг. 62. В этой машине мотор / через редуктор 2 вращает ведущий рифлёный ролик 3, который катится по шаблону 4, перемещая по соответствующей ему линии резак 5. Ролики 6 и 7 являются опорными и катятся по поверхности разрезаемого листа.

Наиболее распространены переносные самодвижущиеся машины, движущиеся по поверхности разрезаемого листа или по особым направляющим рельсам.

Качество газовой резки и ее производительность зависят от подогревающего пламени, равномеоности и скорости передвижения резака, его расстояния от поверхности разрезаемого металла.

Кислородно-флюсовая резка применяется не только для металлов, но и для резки бетона и железобетона. Отличие состоит в том, что поскольку бетон в кислороде не горит, при резке должны применяться флюсы с большей тепловой эффективностью, чем для металлов. Хороший результат дает флюс, состоящий из 75...85 % железного и 15...25 % алюминиевого порошков. Флюс к резаку подают по внешней схеме сжатым воздухом или азотом, вдувая газофлюсовую смесь в струю режущего кислорода. Можно резать бетон толщиной 90...300 мм со скоростью 0,15...0,04 м/мин при расходе флюса 20...42 кг/ч! Гораздо эффективнее процесс резки бетона кислородным копьем (рис. 159). При этом способе кислород продувают через стальную трубу 1 (копье) диаметром 10...35 мм с толщиной стенки 5...7 мм и длиной 3...6 м. В трубы большого диаметра закладывают стальные прутки, чтобы увеличить их массу, трубы малого диаметра обматывают проволокой. Конец трубы нагревают любым источником тепла (например, электрической дугой или газовым пламенем) до температуры воспламенения в кислороде, затем через рукоятку 2 подают кислород и прижимают копье к поверхности разрезаемого материала 3. В результате горения конца копья в кислороде образуются жидкотекучие оксиды железа, реагирующие с бетоном и образующие шлаки, которые выдуваются из полости реза. Копье при резке периодически поворачивают и перемещают

Резка начинается сразу же после возбуждения дуги. Во время резки должно поддерживаться постоянным расстояние 15...20 мм от торца сопла плазмотрона до поверхности разрезаемого листа. Резка прекращается, когда разрывается дуга при сходе плазмотрона с края листа или когда выключается сварочный ток. Скорость резки нужно выбирать в зависимости от разрезаемого металла, его толщины и силы тока. Если скорость занижена, рез будет шире внизу. При правильно выбранной скорости разница в ширине низшей и верхней части реза будет минимальной. При выборе режима нужно учитывать, что завышенные сила тока и расход газа уменьшают ресурс работы плазмотрона.

Кислородная резка стали большой толщины (300 мм и более) выполняется специальными резаками. Наибольшее распространение получила резка кислородом низкого давления. С целью уменьшения нагрева мундштука отраженным тепловым излучением расстояние от него до поверхности разрезаемого металла должно быть значительно больше, чем при обычной резке. Режимы резки сталей большой толщины приведены в табл. 10.28.

Различают два вида воздушно-дуговой резки: разделительную и поверхностную (рис. 10.15). При разделительной резке электрод углублен в полость реза под углом 60...90° к поверхности разрезаемого металла. При поверхностной воздушно-дуговой резке дуга горит между концом электрода и поверхностью обрабатываемого металла. Электрод наклонен к поверхности под углом 30° в сторону, обратную направлению резки. Ее выполняют на постоянном токе обратной полярности. При этом напряжение на дуге составляет 45...50 В, сила тока — 250...500 А (для отдельных резаков — до 1600 А), диаметр электрода — 6... 12 мм, давление воздуха — 0,4...0,6 МПа, его расход — 20...40 м3/ч, масса выплавляемого металла — до 20 кг/ч.

Положение резака в начале резки зависит от толщины разрезаемой стали. При резке листовой стали толщиной до 50 мм резак в начале процесса устанавливается вертикально, а при большой толщине листа — под углом 5° к поверхности торца листа^ а затем его наклоняют на 20—30° в сторону, обратную движению резака (рис. 8.2). Такое расположение резака способствует лучшему прогреву металла по толщине и повышению производительности резки. Оно может быть использовано при ручной и машинной прямолинейной резке, но при вырезке фигурных деталей положение резака должно быть строго перпендикулярным к поверхности разрезаемого металла.

вающей кареткой (в случае обработки неправленных листов). В случае резки листов толщиной до 100 мм расстояние от торца мундштука до поверхности разрезаемого металла должно быть на 2 мм больше длины ядра пламени. При резке стали толщиной более 100 мм и работе на газах-заменителях ацетилена указанное расстояние между торцом мундштука и разрезаемым металлом увеличивают на 30—40 % во избежание перегрева мундштука.

Кислородно-копьев-ая резка применяется для прожигания отверстий в бетоне или железобетоне. При этом способе кислород продувается через стальную трубу (копье), конец которой разогрет до температуры оплавления и прижат к поверхности разрезаемого материала. В результате интенсивного окисления конца трубы в струе кислорода образуются жидко-текучие оксиды железа, которые реагируют с бетоном или железобетоном и превращаются в жидкотекучие шлаки, легко выдуваемые из полости реза. Постепенным прижатием копья к материалу оно преодолевает сопротивления застывающих шлаков и проникает вглубь полости реза, образуя сквозное отверстие. Для увеличения количества выделяемой при оксидировании тру-

Коррозия — это исходящее с поверхности разрушение объектов вследствие химической или электрохимической реакции с дефектоскопическим материалом. При коррозионном испытании определяется, оказывает ли материал на выбранные объекты коррозионное воздействие. Контролю подвергаются все материалы набора (пенетрант, очиститель, проявитель).

лись на наружной поверхности. Разрушение в основном проходило внутри зерна, в некоторых участках наблюдались усталостные микрополоски (рис. 112). В микроструктуре материала детали с трещинами наблюдались сильно вытянутые зерна альфа-фазы (светлые) и бета-фазы (темные), что соответствует сильно деформированному состоянию, тогда как в структуре материала деталей без трещины — равноосные зерна. Судя по твердости (Я„=1,70 ГН/м2), материал муфт соответствовал твердотянутому состоянию с деформацией около 60%. Трещины развивались по более хрупкой, богатой цинком бета-фазе и очень ветвились, что характерно для коррозионной усталости. Разрушение было классифицировано как коррозионно-усталост-ное. Фактором, способствующим разрушению, явилась сильная текстурованность материала.

Прочностные испытания припоев и спаев проводили на срез и разрыв. Пайку образцов выполняли по режиму, соответствующему экспериментам по определению смачивания. При отсутствии титана в припое к шлифованным образцам свинец вообще не адгезировал. Это, очевидно, связано с тем, что при 6 > 90° расплав не затекает на всю глубину микроканавок, а покоится лишь на вершинах микровыступов. Термические напряжения, возникающие при охлаждении, приводят к нарушению такого несплошного контакта. На полированной поверхности стекла капля свинца в большинстве случаев удерживается достаточно прочно. Предел прочности на срез составляет десятые доли кгс/мм2, но воспроизводимость результатов колеблется от нуля до прочности свинца. В случае использования титансодержащих сплавов независимо от марки стекла и чистоты обработки его поверхности разрушение при срезе при 20° С происходит только по припою и составляет 1,3 ± 0,3 кгс/мм2. Диаметр капли при испытаниях на срез составлял 5—6 мм, методика испытаний аналогична работе [3].

до заданного уровня внешних сжимающих или растягивающих усилий, и после включения системы управления нагревом нагруженные образцы подвергали одностороннему тепловому воздействию с заданной постоянной скоростью нарастания температуры на нагреваемой поверхности. Разрушение образцов под действием постоянных внешних усилий, вызывающих в рабочей части образцов напряжения ав (Т) — PIF, происходило при достижении определенного температурного поля по толщине материала Т (х).

В отличие от металлов, где процессы взаимодействия с агрессивной средой происходят на его поверхности, разрушение полиме-

Прочность деталей также зависит от шероховатости поверхности. Разрушение детали, особенно при переменных нагрузках, в большей степени объясняется концентрацией напряжений вследствие наличия неровностей. Чем меньше шероховатость, тем меньше возможность возникновения поверхностных трещин от усталости металла. Отделочная обработка деталей (доводка, полирование и т. п.) обеспечивает значительное повышение предела нх усталостной прочности.

Многочисленные лабораторные исследования, а также наблюдения за эксплуатацией деталей машин показывают, что с уменьшением шероховатости поверхности коррозионная стойкость повышается. Это объясняется тем, что при химической коррозии вещества, вызывающие коррозию, собираются на дне впадин и образуют очаги коррозии. Чем меньше глубина впадин, тем меньше условий для образования очагов коррозии и разрушения поверхности металла. При электромеханической коррозии в первую очередь разрушаются гребешки. Поэтому с уменьшением шероховатости поверхности разрушение поверхности также уменьшается. Кроме того, пассивирующие пленки, более устойчивые на гладкой поверхности, также защищают металл от коррозии.

Прочность деталей также зависит от шероховатости поверхности. Разрушение детали, особенно при переменных нагрузках, в большой степени объясняется концентрацией напряжений вследствие наличия неровностей. Чем чище поверхность, тем меньше возможность возникновения поверхностных трещин от усталости металла. Чистовая отделка деталей (доводка, полирование и т. п.) обеспечивает значительное повышение предела их усталостной прочности.

В проведенных исследованиях реализовывались все виды разрушения (рис. 10.2). Так, по гладкой части разрушались шпильки из стали 10Х11Н23ТЗМР (рис. 10.2, а). Зарождение и дальнейшее развитие усталостной трещины в этих шпильках происходили по месту клеймения (электроискровым карандашом). Разрушение по проточке или переходной части происходило в случае нарушения геометрии сопряжения или радиуса перехода, нарушении технологии изготовления (рис. 10.2, б). В зоне сопряжения резьб для соединений, имеющих крупные шаги (рис. 10.2, в), разрушение происходит от усталостных трещин, развивающихся по поперечному сечению шпильки (чаще всего по первому витку, находящемуся в сопряжении с гайкой, считая от ее опорной поверхности). Разрушение резьбы от циклического среза наблюдается у соединений, изготовленных из материалов, имеющих низкие значения характеристик прочности, а также в связи с уменьшением шага резьбы (рис. 10.2, г).

Коррозия - это исходящее с поверхности разрушение объектов вследствие химической или электрохимической реакции с дефектоскопическим материалом. При коррозионном испытании определяется, оказывает ли материал на выбранные объекты коррозионное воздействие. Контролю подвергаются все материалы набора (пенетрант, очиститель, проявитель).

Коррозия - это исходящее с поверхности разрушение объектов вследствие химической или электрохимической реакции с дефектоскопическим материалом. При коррозионном испытании определяется, оказывает ли материал на выбранные объекты коррозионное воздействие. Контролю подвергаются все материалы набора (пе-нетрант, очиститель, проявитель).




Рекомендуем ознакомиться:
Повышение статического
Повышение технического
Повышение теплостойкости
Повышение влажности
Поступательное перемещение
Повышении начальных
Повышении плотности
Повышении стойкости
Повышении удельного
Повышению долговечности
Повышению концентрации
Повышению напряжения
Повышению показателей
Повышению стабильности
Повышению твердости
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки