Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Повреждений материалов



Освободиться от вышеперечислен!! >ix недостатков позволяет предложенный (совместно с Д.Е Ьугаем) коыроль образующихся при переменном деформировачш: усталостных повреждений материала в виде микродеформаций кристаллической решетки металла Ad/d, если принять ее в качестве кинетического параметра, характеризующего усталостный процесс. Этот параметр обладает высокой чувствительностью к изменению характера распределения и концентрации дефектов кристаллического строения металлов (дислокации, смещенные атомы и вакансии, примесные атомы, дефекты упаковки) и является мерой упругой энергии искажений кристалла (запасенной энергии) в процессе переменного деформирования. В связи с тем, что величина микродеформаций Ad/d определяется с помощью расчета рентгенограмм материалов посредством специальных математических методов (гармонический анализ, аппроксимация, регуляризация и др.), позволяющих с высокой точностью разделять влияние на физическое расширение дифракционных линий собственно микродеформаций и размеров блоков мозаики, появляется возможность однозначной оценки уровня запасенной энергии кристаллической решетки металла. Таким образом можно проследить и за изменением уровня запасенной энергии материала в течение всего усталостного или коррозионно-усталостного процессов вплоть до разрушения. При этом извест-

* Усталость — процесс постепенного накопления повреждений материала под действием переменных напряжений, приводящий к изменению свойств, образованию трещин, их развитию и разрушению (ГОСТ 23207—78).

рости накопления повреждений материала ут и У„ в модельной и натурных средах связаны со временем экспозиции образцов т аналогичными функциональными зависимостями:

Наиболее простой вид решение имеет в случае линейной зависимости объема повреждений материала от времени экспозиции. При этом Vт = а; \„ = Ь. Тогда

Под влиянием переменных напряжений в наиболее напряженном месте детали либо там, где она имеет внутренние пороки, возникает трещина, которая постепенно разрастается, охватывая все большую часть поверхности будущего излома. Наступает такой момент, когда сечение детали в месте развития трещины оказывается настолько ослабленным, что больше не в состоянии сопротивляться действующим на деталь нагрузкам, и она разрушается. Таким образом, усталостью называют процесс постепенного накопления повреждений материала при действии повторно-переменных напряжений, приводящий к образованию трещин и разрушению.

Процесс постепенного накопления повреждений материала под действием переменных напряжений, приводящий к изменению свойств, образованию трещин, их развитию и разрушению, называется усталостью. Способность же материалов воспринимать эти повторные знакопостоянные или знакопеременные напряжения без разрушения называется сопротивлением усталости или циклической прочностью.

Таким образом, под усталостью понимается процесс постепенного накопления повреждений материала под действием переменных напряжений, приводящий к изменению свойств, образованию тре-щтш, их развитию и разрушению.

Таким образом, причиной поломок деталей машин в большинстве случаев является усталость — это процесс постепенного накопления повреждений материала под действием переменных напряжений, приводящий к изменению свойств, образованию трещин, их развитию и разрушению. Свойство материала противостоять усталости называется сопротивлением усталости.

Сопротивление усталости — свойство материала противостоять процессу постепенного накопления повреждений материала под действием переменных напряжений, приводящему к изменению свойств, образованию трещин, их развитию и разрушению. Критерием сопротивления усталости является предел ограниченной выносливости — максимальное по абсолютному значению напряжение цикла, соответствующее задаваемой циклической долговечности. Циклическая долговечность оценивается числом циклов напряжений или деформаций, выдержанных нагруженным объектом до образования усталостной трещины определенной протяженности или до усталостного разрушения.

Сопротивление усталости — свойство материала противостоять процессу постепенного накопления повреждений материала под действием переменных напряжений, приводящему к изменению свойств, образованию трещин, их развитию и разрушению. Критерием сопротивления усталости является предел ограниченной выносливости — максимальное по абсолютному значению напряжение цикла, соответствующее задаваемой циклической долговечности. Циклическая долговечность оценивается числом циклов напряжений или деформаций, выдержанных нагруженным объектом до образования усталостной трещины определенной протяженности или до усталостного разрушения.

Под термином «усталость» понимают [44] процесс постепенного накопления повреждений материала под действием переменных напряжений, приводящий к изменению свойств, образованию и развитию трещин и разрушению.

Механика разрушения дает качественное и количественное' описание повреждений материалов и рассматривает влияние окружающей среды на повреждения. Разрушение начинается как" правило, с образования на поверхности одной иди нескольких' мельчайших трещин. Напряжение, приложенное к материалу" повышается у вершины трещины, и она начинает расти Вначал'е' рост трещины происходит медленно, а затем его скорость может' 7—542

Развитие микроорганизмов неразрывно связано с окружающей; средой. Жизнедеятельность их зависит от внешних воздействующих, факторов, которые можно разделить на физические, химические и биологические. Процессы повреждений материалов конструкций и сооружений с участием микроорганизмов необходимо изучать с: учетом этих факторов.

В-четвертых, по описанным выше причинам моделирование и прогнозирование биоповреждений осложнено. Механизм биоповреждений имеет специфические особенности, связанные с попаданием микроорганизмов на поверхность конструкций, адсорбцией и образованием микроколоний, накоплением продуктов метаболизма, стимулирующих процессы повреждений материалов, эффектами синергизма. Целесообразно остановиться на некоторых вопросах механизма биоповреждений материалов с участием микроорганизмов, а затем перейти к рассмотрению основных методов исследования биокоррозии.

Процесс биоповреждений материалов техники и сооружений в общем виде можно разбить на следующие этапы.

передачи энергии при их взаимодействии с веществом. Некоторые радиоактивные элементы, которые образуются в ядерных реакторах и не встречаются в природе, распадаются с испусканием протонов. Протоны могут также разгоняться до высоких энергий в ускорителях. Пучки протонов высокой энергии могут применяться как для облучения тканей при лучевой терапии рака, так и для исследования радиационных повреждений материалов.

Некоторые проблемы физики радиационных повреждений материалов /

В результате интенсивного развития атомной энергетики стала весьма актуальной проблема радиационной стойкости реакторных материалов. Это, в свою очередь, стимулирует развитие исследований в области физики радиационных повреждений и радиационного материаловедения.

В книге обобщены теоретические и экспериментальные исследования по наиболее важным вопросам физики радиационных повреждений (первичные повреждения, радиационное упрочнение и охрупчивание, радиационное распухание и рост материалов).

Для научных работников, специализирующихся в области физики радиационных повреждений и радиационного материаловедения.

С момента этих опытов произошли большие изменения как в понимании явлений, ответственных за поведение материалов под облучением, так и в разработке радиационно-стойких материалов. Однако, несмотря на определенный прогресс, в настоящее время многие вопросы физики радиационных повреждений материалов изучены недостаточно для того, чтобы обеспечить целенаправленную разработку радиационно-стойких материалов.

В связи с развертыванием широкого фронта работ по освоению ядерных источников энергии вопрос о стойкости материалов под облучением приобрел необычайную остроту. Это обусловлено прежде всего тем, что неполное понимание процессов, ответственных за радиационную повреждаемость материалов, сдерживает темпы развития данных направлений техники и, кроме того, для обеспечения необходимого «запаса надежности» заставляет эксплуатировать действующие реакторы в невыгодном режиме, при пониженных параметрах и т. д., что сопряжено с большими экономическими потерями. Так, по данным американских исследователей, ущерб американской экономики, обусловленный недостаточным пониманием явлений радиационной повреждаемости материалов, составит в 1982 г. свыше миллиарда долларов [4], если в этом вопросе не будет достигнут существенный прогресс. Приведенные данные свидетельствуют о том, что мы еще не всегда умеем оценивать должным образом экономическую эффективность работ по физике радиационных повреждений материалов, однако при их правильной постановке это, несомненно, очень выгодное вложение средств.




Рекомендуем ознакомиться:
Построению диаграммы
Поведение материала
Поведение отдельных
Поведению материала
Поступления кислорода
Поверхностью обрабатываемой
Поверхностью переднего
Поверхностью теплообмена
Поверхность электродов
Поверхность дислокаций
Поверхность испытуемого
Поверхность конденсации
Поверхность контролируемой
Поверхность металлических
Поверхность находится
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки