Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Повреждений приводящих



нием поверхностных трещин в результате взаимодействия с парами воды и частицами пыли или даже в результате прикосновения к образцам. В результате указанных явлений допустимое напряжение при работе стеклянных деталей на растяжение чрезвычайно мало (обычно 10 МПа), что составляет приблизительно 105? среднего предела прочности при кратковременных испытаниях. Даже при таких напряжениях необходимо соблюдать крайнюю осторожность, чтобы избежать локальных концентраций напряжений вблизи отверстий, острых углов, соединений и опор. Необходимо также избежать повреждений поверхности стеклянных изделий.

Оценку параметров распределения глубин коррозионных повреждений поверхности изделий осуществляют несколькими методами. Наиболее простым и достаточно точным для практических расчетов является метод моментов, в котором среднее значение измеренных величин приравнивается к математическому ожиданию распределения, а опытная оценка дисперсии — к дисперсии распределения. Между параметрами распределения и моментами существует непосредственная взаимосвязь [58], выражаемая следующими формулами:

Анализ коррозионных повреждений поверхности более 290 аппаратов показал, что скорость коррозии металла в 96% случаях составляет от 0,01 до 0,5 мм/год. При этом максимальная скорость коррозии более 33% аппаратов достигает 0,5 мм/год. Следовательно, при определении остаточного ресурса аппарата, для которого невозможно осуществить диагностику состояния внутренней поверхности, целесообразно проводить расчет с учетом скорости коррозии 0,5 мм/год. Такую же скорость коррозии рекомендуется принимать при расчете времени эксплуатации новых аппаратов до проведения первой плановой диагностики.

Причины усталостного разрушения пока еще недостаточно изучены. По-видимому, появление микротрещин является главным образом результатом неоднородности строения материалов и наличия следов механической обработки и повреждений поверхности детали (волосовины, раковины, газовые и шлаковые включения, царапины, следы резца или шлифовального камня и т. п.), а также результатом концентрации напряжений, о чем будет идти речь в следующем параграфе.

обработки и повреждений поверхности детали (раковины, газовые и шлаковые включения, царапины, следы резца и т. п.), а также в местах концентрации напряжений (см. ниже). Образовавшаяся трещина, сначала очень маленькая, невидимая простым глазом, под влиянием переменных напряжений, постепенно разви-вается (расширяется и углу-

сечения происходит внезапно и может привести к тяжелым последствиям. Область А имеет сглаженную поверхность, причем на поверхности видны складки и рубцы, радиально расходящиеся от очага зарождения трещины. Первоначальная усталостная трещина обычно начинается от какого-нибудь дефекта в структуре материала (раковина, флокен, инородное включение), либо от места резкого^изменения сечения детали, от случайных или преднамеренных надрезов, царапин и других повреждений поверхности. Во всех указанных местах напряжения значительно превышают средние значения, определяемые расчетом. Действие чрезмерных напряжений в зоне с пониженной сопротивляемостью материала при длительном действии циклических напряжений приводит к образованию и развитию трещин.

возможность изменения чувствительности прибора, что позволяет обнаруживать усталостные трещины на изделиях с различной шероховатостью поверхности, а также при наличии повреждений поверхности в виде пит-тинга, царапин и т. п.

Поверхность пера лопатки в зоне цапфы у оча- ] гов усталости была интенсивно забита, что делало ; невозможным определение для нее исходного состояния. Вдали от излома, как по перу, так и у цап- фы имелось большое количество эрозионных \ и коррозионных повреждений поверхности. По по- i врежденной в результате эрозии поверхности j антикоррозионного покрытия (анодирование i и гидрофобизация) в ряде зон возникли коррози- I онные язвы с межзеренным развитием трещин вглубь металла.

в результате коррозии или из-за механических повреждений поверхности (табл. 12.2). Несмотря на различное расположение дефектов, послуживших очагами разрушения по сечению лонжерона лопасти (см. рис. 12.1), все они привели к усталостным повреждениям, которые могут быть охарактеризованы общей схемой излома (рис. 12.3):

Ноуан и сот'р. '[21] обсуждали обе эти проблемы применительно к композитам, армированным волокнами окиси алюминия. В их работе для уменьшения механических повреждений поверхности волокон применялись покрытия. Авторы пришли к выводу,.

Разрушение детали из сплава МЛ5 началось от острых кромок отверстий, мелких коррозионных повреждений поверхности. Трещина ветвилась и развивалась по телу зерен, излом имел нечетко выраженное складчатое строение без явных макроуста-лостных признаков. С помощью оптической фрактографии был» выявлены мелкие полоски. Наличие усталостного рельефа и характер распространения трещины свидетельствуют о коррозион-но-усталостном разрушении (рис. 110).

При построении вероятностных моделей отказов (см. например [30]) экспериментальные данные по долговечности элементов представляются эмпирическими функциями распределения (ЭФР) как зависимости вероятности разрушения образцов от времени, числа нагружений и т.д. Приведенные ЭФР являются ступенчатыми функциями, для которых, строго говоря, неприменим традиционный аппарат дифференцирования. Однако, физический смысл эмпирической информации (накопление повреждений, приводящих к разрушению образцов) и схожесть графического представления позволяет сделать вывод, что данные графики можно с уверенностью отнести к типу "чертова лестница" [4] и анализировать эти явления с учетом мультифрактального характера процесса разрушения материалов (рисунок 2.24).

Оборудование предприятий нефтехимии и нефтепереработки работает в условиях действия механических напряжений, высоких температур и коррозионно-активных рабочих сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Современные методы механики деформируемого твердого тела позволяют прогнозировать долговечность конструкций на основе расчета напряженно-деформированного состояния для любой точки конструкции. Но для расчета напряженно-деформированного состояния на действующей конструкции необходимо точное знание всех термомеханических режимов эксплуатации либо текущей диаграммы нагружения. Знание исходных на момент изготовления конструкции механических свойств металла недостаточно, так как они в процессе эксплуатации существенно изменяются. Проведение стандартных механических испытаний на действующей конструкции невозможно, поэтому в настоящее время расчет напряженно-деформированного состояния для оценки долговечности осуществляется с использованием данных о свойствах материала в исходном состоянии, что не обеспечивает необходимую точность.

Оборудование предприятий нефтехимии и нефтепереработки работает в условиях действия механических напряжений, высоких температур, природных и технологических коррозионно-активных сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Преобладающая часть парка оборудования нефтепереработки имеет поверхностный контакт с рабочей средой, эксплуатируется в очень жестких режимах — в условиях действия высоких давлений и температур. Современные технологические процессы ориентированы на углубление переработки нефтяного сырья. Увеличение выхода светлых нефтепродуктов связано с повышением роли деструктивных процессов переработки нефти, что в свою очередь ведет к интенсификации технологических процессов и усложнению конструкции оборудования. В последние годы в переработку вовлекаются все большие объемы нефтей с повышенным содержанием сероводорода, минеральных солей и газоконденсатов с высоким содержанием агрессивных компонентов. Это обстоятельство значительно усложняет условия эксплуатации оборудования, вызывая интенсивное развитие различных коррозионных процессов. Коррозионная активность технологических сред является одним из основных факторов, снижающих надежность металлических конструкций и способствующих зарождению трещин [4]. Агрессивное воздействие рабочих сред обусловлено обводненностью нефти, наличием в ней кислых компонентов, сернистых и хлористых соединений, а так же применением в процессе подготовки и переработки коррозионно-активных реагентов. Как показали результаты диагностирования 59 резервуаров для хранения нефти и нефтепродуктов (годы постройки 1975 — 80 , объем резервуаров 20 000 NT), при суммарном содержании в нефти воды, хлора и серы более 3 % коррозионное растрескивание имело место во всех резервуарах, эксплуатировавшихся более 15 лет [3]. Особую опасность представляет разрушение оборудования в условиях действия водороДосодержащих и водородо-выделяющих сред.

разуют предельные состояния, наступившие в результате постепенного накопления в материале рассеянных повреждений, приводящих к зарождению и развитию макроскопических трещин. Часто зародыши и очаги таких трещин, вызванные несовершенством технологических процессов, содержатся в объекте до начала его функционирования. Причиной выхода объекта из строя является развитие трещин до опасных или нежелательных размеров. Если трещина не обнаружена своевременно, ее развитие может привести к аварийной ситуации. Вторая группа состоит из предельных состояний, связанных с чрезмерным износом трущихся деталей и поверхностей, находящихся в контакте с рабочей или окружающей средой. Предельные состояния первой группы типичны для несущих элементов, работающих при высоких уровнях общей нагруженности.

Оборудование предприятий нефтепереработки работает в условиях действия механических напряжений, высоких температур и коррозиокно-активных рабочих сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Процесс зарождения и накопления

При построении вероятностных моделей отказов (см..например,[30]) экспериментальные данные по долговечности элементов представляются эмпирическими функциями распределения (ЭФР) как зависимости вероятности разрушения образцов от времени, числа нагружений и т.д. Приведенные ЭФР являются ступенчатыми функциями, для которых, строго говоря, неприменим традиционный аппарат дифференцирования. Однако физический смысл эмпирической информации (накопление повреждений, приводящих к разрушению образцов) и схожесть графического представления позволяет сделать вывод, что данные графики можно с уверенностью отнести к типу "чертова лестница" [4] и

Оборудование предприятий нефтехимии и нефтепереработки работает в условиях действия механических напряжений, высоких температур и коррозионно-активных рабочих сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Современные методы механики деформируемого твердого тела позволяют прогнозировать долговечность конструкций на основе расчета напряженно-деформированного состояния для любой точки конструкции. Но для расчета напряженно-деформированного состояния на действующей конструкции необходимо точное знание всех термомеханических режимов эксплуатации либо текущей диаграммы нагружения. Знание исходных на момент изготовления конструкции механических свойств металла недостаточно, так как они в процессе эксплуатации существенно изменяются. Проведение стандартных механических испытаний на действующей конструкции невозможно, поэтому в настоящее время расчет напряженно-деформированного состояния для оценки долговечности осуществляется с использованием данных о свойствах материала в исходном состоянии, что не обеспечивает необходимую точность.

Оборудование предприятий нефтехимии и нефтепереработки работает в условиях действия механических напряжений, высоких температур, природных и технологических коррозионно-активных сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Преобладающая часть парка оборудования нефтепереработки имеет поверхностный контакт с рабочей средой, эксплуатируется в очень жестких режимах - в условиях действия высоких давлений и температур. Современные технологические процессы ориентированы на углубление переработки нефтяного сырья. Увеличение выхода светлых нефтепродуктов связано с повышением роли деструктивных процессов переработки нефти, что в свою очередь ведет к интенсификации технологических процессов и усложнению конструкции оборудования. В последние годы в переработку вовлекаются все большие объемы нефтей с повышенным содержанием сероводорода, минеральных солей и газоконденсатов с высоким содержанием агрессивных компонентов. Это обстоятельство значительно усложняет условия эксплуатации оборудования, вызывая интенсивное развитие различных коррозионных процессов. Коррозионная активность технологических сред является одним из основных факторов, снижающих надежность металлических конструкций и способствующих зарождению трещин [4]. Агрессивное воздействие рабочих сред обусловлено обводненностью нефти, наличием в ней кислых компонентов, сернистых и хлористых соединений, а так же применением в процессе подготовки и переработки коррозионно-активных реагентов. Как показали результаты диагностирования 59 резервуаров для хранения нефти и нефтепродуктов (годы постройки 1975 - 80 , объем резервуаров 20 000 м~'), при суммарном содержании в нефти воды, хлора и серы более 3 % коррозионное растрескивание имело место во всех резервуарах, эксплуатировавшихся более 15 лет [3]. Особую опасность представляет разрушение оборудования в условиях действия водородосодержащих и водородо-выделяющих сред.

разуют предельные состояния, наступившие в результате постепенного накопления в материале рассеянных повреждений, приводящих к зарождению и развитию макроскопических трещин. Часто зародыши и очаги таких трещин, вызванные несовершенством технологических процессов, содержатся в объекте до начала его функционирования. Причиной выхода объекта из строя является развитие трещин до опасных или нежелательных размеров. Если трещина не обнаружена своевременно, ее развитие может привести к аварийной ситуации. Вторая группа состоит из предельных состояний, связанных с чрезмерным износом трущихся деталей и поверхностей, находящихся в контакте с рабочей или окружающей средой. Предельные состояния первой группы типичны для несущих элементов, работающих при высоких уровнях общей нагруженное™.

Оборудование предприятий нефтепереработки работает в условиях действия механических напряжений, высоких температур и коррозионно-активных рабочих сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Процесс зарождения и накопления

контакта с рабочей средой под действием механических напряжений, Скорости развития этих процессов и накопления различных структурных повреждений, приводящих к отказу материала, и являются параметрами оценки работоспособности.




Рекомендуем ознакомиться:
Поведение металлических
Поведение продуктов
Поверхностью электрода
Поверхностью контролируемого
Поверхностью образованной
Поверхностью происходит
Поверхностью заготовки
Поверхность барабанов
Поверхность фундамента
Поверхность исследуемого
Посвящена исследованию
Поверхность корродирующего
Поверхность металлического
Поверхность наносится
Поверхность необходимо
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки