Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Природных полимеров



Ограниченность применения природных материалов в качестве конструкционных материалов в антикоррозионной технике, несмотря на их высокую кнслотостойкость, объясняется в значи-чителыюй степени трудностями обработки горных пород, а также громоздкостью сооружений из горных пород. Однако в ряде случаев горные породы являются незаменимыми материалами, как, например, для корпусов электрофильтров, башен в йодо-бромном производстве, башен для поглощения газообразного хлористого водорода, колосников опор и решеток и др. Горные породы используются также для изготовления насадок для реакционной аппаратуры и п качестве наполнителей для изготовления вяжущих силикатных материалов — кислотоупорных цементов и бетонов.

Пластические массы. Пластмассы обладают многими ценными свойствами (диэлектрической прочностью, антикоррозионной стойкостью, прозрачностью, малой плотностью, быстротой изготовления и др.), выгодно отличающими их от черных, цветных металлов и других известных природных материалов. Применение пластмасс эффективно только тогда, когда выбор их для того или другого назначения производится с учетом их свойств. Практически при выборе полимерных материалов следует руководствоваться потребительскими рядами пластмасс, составленными по таким главнейшим их свойствам, как ударная прочность, износостойкость, фрикционность, антифрикционность, тепло-жаростойкость и химическая стойкость и др. Такой ряд, например, конструкционных, ударопрочных пластмасс содержит несколько наименований и марок, обладающих важными свойствами для выбора материала (табл. 13.1) *.

Вряд ли найдется в природе еще какой-нибудь элемент, который обладал бы столь противоположными свойствами, как углерод, выступая в обличьях, например, алмаза и графита. Обычно бесцветный, прозрачный, твердый (рекордсмен среди природных материалов), привлекательный, драгоценный (самого высокого класса) алмаз и серо-черный, непрозрачный, жирный на ощупь, чешуйчатый, очень мягкий, с металлическим блеском графит! Трудно поверить в их близкое родство. Но модификации углерода служат убедительным свидетельством их родственных связей. Так, при температурах выше 1400 °С в вакууме или инертной атмосфере можно наблюдать превращение алмаза в графит. Нагрев некоторых разновидностей «аморфного» углерода (кокс, сажа, древесный уголь) выше 1500—1600°С без доступа воздуха вызывает превращение их в графит.

В основе всех материалов, предназначенных для получения полимерных покрытий, лежат пленкообразующие вещества, которые, собственно, и делают материал способным давать пленку на твердой подложке. В качества пленкообразующих используются в основном синтетические смолы '•— эпоксидные, полиэфирные, алкидные, фенолформальдегидные, кремнийорганиче-ские и лр, а также ряд природных материалов — высыхающие масла, нитроцеллюлоза, битумы и т. д. В большинстве случаев пленкообразующие вещества представляют собой олигймеры, которые содержат реакционноспособные группы и при отверждении превращаются в высокомолекулярные соединения (термореактивные пленкообразующие). Но часто в качестве пленкообразующих используют растворы высокомолекулярных соединений, отверждение которых состоит в простом удалении растворителя^ (термопластичные пленкообразующие).

Пигменты получают следующими способами: осаждением из водных растворов (мокрый способ); возгонкой металлов с последующим окислением их паров; прокаливанием; комбинированным способом (осаждением с прокаливанием); механической переработкой природных материалов и пород. Иногда эти способы сочетают с термообработкой и обработкой химическими реагентами.

От природных материалов к искусственным и синтетическим

От природных материалов к искусственным и синтетическим .................. • •191

С проблемой подвода и отвода тепла инженеры встречаются на каждом шагу. Работает атомная электростанция — значит, в ядерном реакторе выделяется огромное количество тепловой энергии, которое надо как можно быстрей вывести наружу для превращения в электричество. Крутится электромотор, пыхтит двигатель внутреннего сгорания, горит радиолампа, ракета врезается в атмосферу — здесь мы уже имеем дело с вредным нагревом, когда от тепла надо побыстрее избавиться. Неудивительно, что теплотехники на протяжении многих десятилетий ломают головы, пытаясь ускорить движение медлительных тепловых потоков. Но несокрушимым препятствием на этом пути всегда была исключительно низкая теплопроводность природных материалов. Возьмем, например, медь. Чтобы пропускать по медному стержню диаметром 2—3 сантиметра и длиной менее полуметра всего 10 киловатт тепловой энергии, нужен огромный «термический напор». Один конец стержня пришлось бы раскалить втрое горячее поверхности Солнца, фактически превратить в пар, тогда как другой должен был бы сохранять комнатную температуру. А ведь медь считается одним из лучших проводников тепла. Что касается «тепловой трубки», то при тех же размерах она пропустит такую энергию почти без сопротивления, и разность температур между ее концами практически не удастся даже измерить. Аналогичную теплопроводность могла бы иметь только медная глыба диаметром в три метра и весом 40 тонн.

Как и большинство природных материалов, кожа имеет очень сложную структуру: это — тесно сплетенные пучки волокон с одним преобладающим направлением расположения, сложным

Научно-техническая революция является научно обоснованным, закономерным явлением. Она наиболее существенно влияет на развитие техники и технологии, процессов управления. Чтобы обеспечить это развитие, необходимо решить ряд крупных народнохозяйственных проблем. Одной из них является обеспечение промышленности необходимыми конструкционными материалами. Улучшение качества изделий при одновременном увеличении их выпуска предъявляет определенные требования к применяемому материалу. В связи с постоянным уменьшением ресурса традиционных природных материалов резко возрастает потребность в синтетических материалах. Их создают для конкретного целевого применения со всеми необходимыми свойствами.

В историческом аспекте человек сначала научился хозяйственному применению некоторых природных материалов, таких как камень, дерево, глина, растительные волокна и животные ткани. На следующей, более высокой стадии своего развития он научился плавить металлы и делать стекло. Однако только в последнее время, благодаря более глубокому пониманию физических, химических и биологических свойств различных веществ, а также достижениям в технологии появилась возможность получать материалы и изделия с заданными свойствами, т. е. удовлетворяющие конкретным требованиям. Такими свойствами обладают композиты, новые материалы, конструируемые гением человеческой мысли.

КЛЕЙ — природные или синтетич. вещества, применяемые для соединения различных материалов за счёт образования адгезионной связи (см. Адгезия) клеевой плёнки с поверхностями склеиваемых материалов. По физ. состоянию К. представляют собой жидкости различной вязкости (жидкие мономеры, р-ры, суспензии, эмульсии), плёнки, порошки или прутки, расплавляемые перед употреблением и наносимые на горячие поверхности. По природе осн. компонента различают К. неорганич., органич. или элементоорганические. К неорганич. К. относятся жидкие стёкла (водные р-ры силиката натрия и калия) и клеи-фритты (водные суспензии композиций, содержащих окислы щелочных и щёлочноземельных металлов). Жидкие стёкла применяют для склеивания целлюлозных материалов, клеи-фритты — для склеивания металлов и керамики. К органич. К. относят композиции на основе природных и синтетич. полимеров. В произ-ве К. на основе природных полимеров используют вещества животного происхождения — продукты переработки мездры, костей и чешуи (коллаген), крови (альбумин) и молока (казеин), растит, происхождения — камеди, смолы, крахмал, декстрин, натур, каучук, гуттаперчу, зеин и соевый казеин. К. на основе природных полимеров применяют для склеивания древесины, бумаги, кожи, текст, материалов и т. д. Группа синтетич. К. включает композиции на основе полиакрилатов, полиимидов, полиэфиров, полиуретанов, синтетич. каучуков, феноло-формалъдегидных смол, карб-амидных смол, эпоксидных смол и др. Синтетич. К. обеспечивают высокую прочность склеивания различных материалов, обладают устойчивостью к факторам внеш. воздействия и находят применение при склеивании металлов, стекла, керамики, пластмасс, древесины, текст., целлюлозных и др. материалов. Элементоорганич. К. содержат в своём составе кремнийорганич., борорганич., металлоор-ганич. и др. полимеры, обладают очень высокими термостойкостью и термостабильностью (обеспечивают высокую прочность соединения различных материалов при кратковрем. нагревании до темп-р порядка 1000 °С и выше и выдерживают длит. нагревание при 400—600 °С). Элементоорганич. К. используют для склеивания металлов, керамики, графита, термостойких пластмасс и др.

Натуральные и искусственные волокна химически инертны по отношению к морской воде. Морские организмы обычно разрушают волокна из природных полимеров за 1—6 мес, хотя некоторые природные полимеры при идеальных условиях могут сохраняться до 4 лет. Синтетические полимеры, как правило, вообще не подвержены биологическому разрушению. Поскольку разрушение волокон связано только с биологической деятельностью, то оно сильно зависит от географического положения, глубины и периодических изменений локальной биологической среды.

Искусственные неметаллические материалы, как правило, получают из природных полимеров при соответствующей их химической переработке. Наиболее распространенными представителями этой группы материалов являются: различные модификации древесной и хлопковой целлюлозы, бумажные и текстильные материалы (в том числе бумага, вискозные ткани и волокна, целлофан), пластмассы на основе сложных (нитро-, ацетил- и ацетобутиратцеллюлозы) и простых (этилцеллюлоза) эфиров целлюлозы (этролы и этрольные массы); продукты переработки животных и растительных тканей — хромовые и красно-дубные кожи, полимерные белковые соединения — казеин, столярный клей, пластмассы типа галалит и т. п.; продукты переработки минеральных ископаемых — силикатные вяжущие составы (цементы, бетоны, гипс), вермикулит, некоторые разновидности асботехнических и углегра-фитовых материалов и т. п.

В- табл. 42 и 43 даны свойства важнейших природных и искусственных (полученных переработкой природных полимеров) органических волокон, в табл. 44 — синтетических волокон, вырабатываемых из органических полимеров, полученных

третьего класса — получаемые на основе химически модифицированных природных полимеров;

Особое место среди искусственных материалов заняли материалы, получившие название «синтетических». Они появились в результате более глубокого преобразования вещества. Первые искусственные полимерные материалы получали в результате химической переработки лишь некоторых природных полимеров (целлюлоза, белки). Химический состав искусственных полимеров, представляющих модифицированные природные материалы, предрешается составом исходных полимеров.

Синтетические полимеры получают не на основе природных полимеров, а из веществ совершенно иного состава и свойств. Исходным сырьем здесь могут служить некоторые простейшие низкомолекулярные вещества, например этилен, ацетилен, фенол и некоторые другие, которые в огромных количествах получаются при переработке нефти и каменного угля. Именно по этому пути пошла химия синтетических материалов в конце XIX — начале XX в. В принципе синтетические полимеры могут быть получены и из элементарных углерода, водорода и некоторых других элементов. Синтетическая технология в химии эволюционизирует от использования готовых природных веществ и материалов через их все более сложную модификацию к получению новых материалов, не встречающихся в природе.

Суть золь-гель-метода заключается в том, что на первой стадии процесса формируется химический состав продукта в виде высокодисперсного коллоидного жидкого раствора - золя (размер частиц дисперсной фазы 10~9 -10~8м). Увеличение концентрации дисперсной фазы приводит к появлению коагуляционных контактов между частицами и образованию геля. Золь-гель-процесс - удобный путь получения дисперсных материалов (называемых керамерами) через рост металлоксополи-меров в растворах. Он основан на неорганических реакциях полимеризации. Золь-гель-метод включает следующие основные этапы: приготовление раствора —> образование геля —> сушка —> термообработка. В большинстве случаев исходными веществами служат алкоксиды металлов. Реакцию осуществляют в среде органических растворителей. Алкоксиды металлов (в большей степени титана и кремния) - сшивающие реагенты для многих природных полимеров, таких как полисахариды, целлюлозные материалы и др. Такие полимеры содержат высокоактивные гидрок'сильные группы, способные in situ формировать оксополи-меры. Для других видов полимеров вода является реагентом, при добавлении которого происходит гидролиз алкоксидов металлов M(OR)n (M=Si, Ti, Zr, VO, Zn, Al, Sn, Ce. Mo, W, а также лантаниды и др.) с последующей конденсацией образующихся соединений, приводящих к формированию геля.

Водородная связь приводит к ассоциации одинаковых или различных молекул в комплексы (Н-комплексы). Она во многом определяет свойства воды и льда, молекулярных кристаллов, структуру и свойства многих искусственных (капрон) и природных полимеров (белки, нуклеиновые кислоты) и других соединений.

Для клеев из синтетических (полиэфирных, эпоксидных, феноло-формальдегидыых смол и др.) полимеров характерны высокая прочность склеивания и стойкость в различных средах. Клеи из природных полимеров (например, крахмала) отличаются невысокой устойчивостью к действию воды и микроорганизмов.

Основу неметаллических материалов составляют синтетические полимерные материалы, пластические массы (пластмассы), композиционные материалы с полимерной матрицей, получаемые переработкой синтетических и природных полимеров с добавками наполнителей.




Рекомендуем ознакомиться:
Применяемые материалы
Применяемых конструкционных
Применяемых типоразмеров
Применяемое оборудование
Применяемого технологического
Применяется комбинированная
Предприятия владельца
Применяется преимущественно
Применяется совместно
Применяется установка
Применялись следующие
Применять численные
Применять искусственное
Применять конические
Применять нецелесообразно
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки