Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Преобразователи предназначены



Многоэлементные преобразователи позволяют визуализировать рельеф магнитного поля и по изображению поля дефекта осуществить его

Матричные многоэлементные преобразователи позволяют получать информацию о распределении рельефа электромагнитного поля на участке поверхности объекта контроля, соответствующем площади самой матрицы как в статическом, так и в динамическом режимах. Эту же задачу можно решить применением строчных многоэлементных преобразователей, но только в динамическом режиме, за счет применения электронно-механического сканирования. Матричные преобразователи имеют такие недостатки, как наличие перекрестных помех, сложность изготовления, большое число выводов и наличие промежутков между элементарными преобразователями. Строчные многоэлементные преобразователи имеют более простую конструкцию и соответственно более технологичны в изготовлении, имеют минимальный уровень взаимовлияния элементов, могут обеспечивать более высокую чувствительность и разрешающую спо-

Многоэлементные преобразователи позволяют визуализировать рельеф магнитного поля и по изображению поля дефекта осуществить его

Матричные многоэлементные преобразователи позволяют получать информацию о распределении рельефа электромагнитного поля на участке поверхности объекта контроля, соответствующем площади самой матрицы как в статическом, так и в динамическом режимах. Эту же задачу можно решить применением строчных многоэлементных преобразователей, но только в динамическом режиме, за счет применения электронно-механического сканирования. Матричные преобразователи имеют такие недостатки, как наличие перекрестных помех, сложность изготовления, большое число выводов и наличие промежутков между элементарными преобразователями. Строчные многозлементные преобразователи имеют более простую конструкцию и соответственно более технологичны в изготовлении, имеют минимальный уровень взаимовлияния элементов, могут обеспечивать более высокую чувствительность и разрешающую спо-

Наибольший интерес представляют пакетные, групповые и катящиеся преобразователи. Так, пакетные преобразователи представляют собой отдельные пьезоэлементы, собранные в пакет. В результате расчета колеблющегося прямоугольного пьезоэле-мента было установлено, что для возбуждения упругого импульса, равного периоду собственных колебаний, пьезоэлемент должен иметь размеры, обеспечивающие кратность частот мод колебаний прямоугольного элемента. Возбуждая такой пьезоэлемент электрическим импульсом, в спектре которого отсутствуют частотные составляющие, равные кратным частотам, получают короткий упругий импульс. При длительности такого электрического импульса, равной одному периоду собственных колебаний пьезо-элемента, длительность упругого импульса будет также равна одному периоду, при длительности электрического импульса равного двум, трем и более периодам длительность упругого импульса соответственно будет равна двум, трем и более периодам. Таким образом, данные преобразователи позволяют управлять длительностью упругого сигнала. Однако практически для реализации эхо-импульсного метода они не пригодны, так как не обеспечивают высокой направленности при излучении и приеме упругих волн. Основной помехой при приеме упругих волн являются поверхностные волны, которые возникают при возбуждении ненаправленного преобразователя. Для обеспечения направленности в главном направлении (перпендикулярно поверхности, на которой расположен преобразователь) предложен метод группирования элементарных источников. Группирование позволяет существенно увеличить направленность и уменьшить уровень поверхностных волн. Различают линейное и базисное группирование. Линейное группирование полностью не исключает образования волн помех, оно их локализует в определенном направлении. Для исключения образования поверхностных волн предложен преобразователь, в котором пьезоэлементы располагают на круговой базе.

камеры. Метод измерения технически сложен и требует создания измерительной аппаратуры высокой разрешающей способности в случае применения его для локального измерения влажности пара при низких давлениях. Однако метод практически безынерционен и позволяет регистрировать процессы с быстрым изменением влажности (вплоть до пролета крупных капель). Метод пригоден для использования в случаях траверсирования потока влажного пара за решетками турбин, так как зонды локальной влажности и преобразователи позволяют создать для этих целей компактное устройство. Электронная аппаратура может работать практически со всеми известными емкостными датчиками дифференциального типа, а потому универсальна по применению. Погрешность метода оценивается в ±1% измеряемой влажности. Градуировочные зависимости позволяют оценить диапазон измеряемых влажностей 0—20 %. Метод i неприменим в потоках малой скорости и больших влажностей из-за значительных ошибок, вносимых достаточно толстой пленкой на стенках камеры датчика. Целесообразный диапазон скоростей потока влажного пара составляет М=0,3-М. К недостаткам метода следует отнести сложность аппаратуры и зондов, а также необходимость корректировки нуля прибора с течением времени.

Для измерения линейных или угловых величин со значительным диапазоном отклонений применяют индуктивные приборы с дифференциальным преобразователем соленоидного типа (рис. 1.4, а). Соленоидный преобразователь состоит из двух катушек 4 и 2, внутри которых помещен ферромагнитный сердечник (якорь) 3. При перемещении якоря вдоль оси катушек индуктивность последних изменяется. Характеристика соленоидного преобразователя линейна, а измерительные усилия незначительны. В существующих приборах с усилителями эти преобразователи позволяют получить цену деления от 0,05 до 1 мкм и пределы измерения от очень малых (±3 мкм) до относительно больших .(±1,5 мм) [16].

Широкие возможности обработки результатов контроля открывает применение когерентных методов контроля (см. разд. 2.2.5.6), когда с помощью компьютера выполняют синтезирование фокусирующего преобразователя с очень большими размерами, равными области сканирования, а следовательно, с очень узкой фокальной областью. В результате эти методы, как и фокусирующие преобразователи, позволяют достичь высокого отношения сигнал/помеха, причем не в узкой зоне фокусировки, а во всем материале ОК (см. разд. 3.2.7.6).

Оптимальный путь решения задачи контроля сварных соединений из пластмасс, по мнению авторов, - применение для контроля пластмассовых трубопроводов, описанных выше, раздельно-совмещенных преобразователей хордового типа (см. рис. 2.16) [79]. PC-хордовые преобразователи позволяют сформировать в рабочем сечении трубы акустическое поле продольных волн, параметры направленности которого обеспечивают эффективную выявляемость дефектов сварного шва и относительно низкий уровень сигналов от грата.

Датчики крутящего момента аналогичны датчикам силы и также основаны на методе упругого уравновешивания измеряемой величины. Они содержат упругий элемент, снабженный преобразователем угла его закручивания в электрический сигнал и токосъемником для передачи сигнала с вращающегося вала (рис. 24). Угол закручивания измеряют либо по деформации кручения, либо по углу поворота двух сечений упругого элемента, находящихся на определенном расстоянии друг от друга. Первый метод широко распространен, что является следствием стремления унифицировать методы измерений и аппаратуру. Тензорезистивные преобразователи позволяют достичь этого благодаря их универсальности. Однако сигнал наиболее отработанных и прецизионных металлических тензорезисторов мал по абсолютной величине и при передаче по токосъемнику подвержен влиянию помех. Кроме тензорезисторных, применяют магнитоупругие МЭП [40]. Второй метод осуществляют с помощью двух растровых дисков, расположенных рядом, но опирающихся на упругий элемент возможно дальше друг от друга. Взаимное угловое перемещение растров измеряют оптическим, индуктивным или другим МЭП, чувствительным к этому Параметру

Прямые преобразователи предназначены для возбуждения продольных волн, наклонные в основном сдвиговых (поперечных) и поверхностных волн, а также продольных волн, вводимых под углом к поверхности контролируемого изделия. С рабочей стороны прямых преобразователей (рис, 4,7, а) на пье-зопластине 3 имеется защитное донышко 4 (протектор), предохраняющее пьезопластину от механических повреждений. С

Радиационно-оптические преобразователи предназначены для преобразования радиационного изображения в световое изображение. Радиационно-оптические преобразователи, в которых за счет дополнительных источников энергии, не связанных с ионизирующим излучением, в процессе облучения происходит радиационно-оптическое преобразование е коэффициентом усиления яркости более единицы, называются усилителями радиационного изображения.

Прямые преобразователи предназначены для возбуждения продольных волн. В контактных наклонных совмещенных преобразователях (рис. 23, б) для ввода -ультразвуковых колебаний под углом к поверхности контролируемого изделия применяют призму 8. Эти колебания предназначены для возбуждения в с сновном сдвиговых, поверхностных и нормальных волн.

Эти данные лежат в основе методик УЗ К стыковых швов сосудов. В них регламентируется контроль по схеме тандем для обнаружения вертикально ориентированных дефектов; наклонные совмещенные преобразователи предназначены для выявления наклонных плоскостных и объемных дефектов. С целью компенсации наклона дефектов в горизонтальной плоскости обязателен поворот преобразователя вокруг точки ввода на 10 ... 15°. Выявленные диапазоны угла наклона дефектов лежат в основе требования обязательного контроля с двух сторон шва. По соображениям обеспечения помехоустойчивости швы толщиной свыше 60 мм контролируют только прямым лучом (в общем случае с четырех сторон шва). Поскольку согласно рис. 6.29 выявляемость при а„ = 38 и 50° практически одинакова, среднюю и нижнюю части шва прозвучивают одним из этих преобразователей. Для сокращения мертвой зоны верхнюю часть шва контролируют преобразователем с большим углом ввода (65 ... 70 °С), а при наличии выпуклости — головными волнами.

Производственное объединение «Манометр» (Москва) выпускает прецизионные электрические преобразователи давления ИПД для использования в лабораторных измерительных комплексах. Преобразователи предназначены для проверки приборов давления (перепады давления), для прецизионного измерения избыточного и вакууметрического давлений жидкости и газа.

Преобразователи предназначены для повышения частоты и понижения напряжения электрического тока и применяются для питания электроэнергией ручного электрифицированного инструмента с электродвигателями повышенной частоты.

Преобразователи с длительной реверберацией используют лишь при контроле методами прохождения. Коротко-импульсные преобразователи предназначены в основном для контроля эхомето-дом, однако, их применяют и для работы методом прохождения.

Такие преобразователи предназначены для преобразования естественных сигналов от преобразователей температуры (ТЭП или ТС) в унифицированный выходной сигнал 0—5; 0—20; 4—-20 мА, О—10 В или в цифровой код. Такое преобразование может осуществляться либо отдельным блоком — нормирующим преобразователем, либо устройством унификации, расположенным непосредственно в головке ТП. Такие ТП называются термопреобразователями с унифицированным выходным сигналом. В табл. 5.14 приведены основные технические данные таких преобразователей предприятий 5, 7. Подобные преобразователи выпускаются так-

Радиационно-оптические преобразователи предназначены для преобразования радиационного изображения в световое изображение. Радиационно-оптические преобразователи, в которых за счет дополнительных источников энергии, не связанных с ионизирующим излучением, в процессе облучения происходит радиационно-оптическое преобразование с коэффициентом усиления яркости более единицы, называются усилителями радиационного изображения.

Прямые преобразователи предназначены для возбуждения продольных волн. В контактных наклонных совмещенных преобразователях (рис. 26, 6) для ввода ультразвуковых колебаний под углом к поверхности контролируемого изделия применяют призму 8. Эти преобразователи предназначены для возбуждения в основном сдвиговых (поперечных) и поверхностных волн, а также продольных волн, наклонных к поверхности контролируемого объекта.




Рекомендуем ознакомиться:
Приведена структура
Представлены диаграммы
Приведения определяется
Приведенные жесткости
Приведенные расчетные
Приведенные соображения
Приведенных жесткостей
Приведенных рассуждений
Приведенных выражений
Приведенных ускорений
Приведенными затратами
Приведенная характеристика
Представлены конструкции
Приведенной диаграммы
Приведенной скоростью
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки