Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Применяют источники



Статическими называют испытания, при которых прилагаема;] к обращу нагрузка возрастает медленно и плавно. Чаще применяют испытания на р а с т я жен и е, позволяющее по результатам одного опыта установить несколько важных механических характеристик металл;: или сплава.

Статическими называют испытания, при которых прилагаемая к образцу нагрузка возрастает медленно и плавно. Чаще применяют испытания на растяжение, позволяющие по результатам одного опыта установить несколько важных механических характеристик металла или сплава.

Испытание на изгиб. Для хрупких материалов (чугун, инструментальные стали после поверхностного упрочнения и т. д.) широко применяют испытания на изгиб (ГОСТ 14019—80). Чаще испытания проводят сосредоточенной нагрузкой на образец, лежащий на двух опорах (рис. 63). Предел прочности при изгибе
3. В каких случаях применяют испытания на статический изгиб?

Чисто усталостные испытания теперь проводят не так широко, как раньше. Применяют испытания по Glenny, при которых термические напряжения воспроизводятся в том же виде, что и в реальных деталях; этого достигают с помощью клиновидного образца, позволяющего реализовать различия в скорости нагрева. Правда, напряжения и деформации приходится рассчитывать. Есть стремление к тому, чтобы приспособить методику малоцикловых усталостных испытаний к условиям быстрого нагрева и охлаждения, а затем использовать эти надежно измеренные характеристики долговечности для аттестации реальных деталей. При таком подходе анализ механического и теплового поведения нужно проводить только на детали, но не на образце. И все же испытания на термическую усталость позволяют достаточно просто сравнивать материалы по надежности и улавливать особенности поведения, которые теряются при испытаниях на термомеханическую усталость. Микроструктура клиновых образцов (в 358

Прочность при динамических нагрузках определяют по данным испытаний: на ударную вязкость (разрушение ударом стандартного образца на копре), на усталостную прочность (определение способности материала выдерживать, не разрушаясь, большое число повторно-переменных нагрузок), на ползучесть (определение способности нагретого материала медленно и непрерывно деформироваться при постоянных нагрузках). Наиболее часто применяют испытания на ударную вязкость (рис. 1.7):

Для оценки склонности материалов к хрупкому разрушению широко применяют испытания на ударный изгиб образцов с надрезом, в результате которых определяют ударную вязкость. Ударная вязкость оценивается работой, затраченной на ударный излом образца и отнесенной к площади его поперечного сечения в месте надреза.

С целью наиболее точной имитации реальных вибраций и создаваемых ими нагрузок все более широко применяют испытания случайной вибрацией, а также испытания «реальной вибрацией» и ударом.

Наряду с испытаниями на растяжение основного металла и сварного соединения применяют испытания на растяжение и наплавленного металла. Из наплавленного металла вдоль шва вырезают круглые образцы с диаметром рабочей части 6 или 10 мм. Длина расчетной части 30 или 50 мм соответственно (образцы пятикратные). Испытания проводят при температуре от + 10 до +30° С. При "испытании металла шва на растяжение определяют предел прочности, предел текучести, относительное

Разработано большое количество различных методов испытаний для выявления скрытых дефектов. Кроме обычного тщательного визуального исследования применяют испытания на герметичность, рентгеноскопию и гамма-дефектоскопию, испытания ультразвуком, люминесцентную, магнитную и цветовую дефектоскопию.

Износостойкость и фрикционные свойства пар трения определяются природой контактирующих материалов и условиями трения. Большое число факторов, влияющих на процесс изнашивания деталей машин, а также необходимость изучения особенностей этого влияния обусловливают значительный объем экспериментальных исследовании. В настоящее время широко применяют испытания на трение и изнашивание, проводимые в четыре этапа [23]: 1) обычные лабораторные испытания физических и механических свойств материалов;

Для питания дуги с жесткой характеристикой применяют источники с падающей или пологопадающей внешней характеристикой (ручная дуговая сварка, автоматическая под флюсом, сварка в защитных газах неплавящимся электродом). Режим горения дуги определяется точкой пересечения характеристик дуги 6 и источника тока / (рис. 5.4, б). Точка С соответствует режиму устойчивого горения дуги, точка А — режиму холостого хода в работе источника тока в период, когда дуга не горит и сварочная цепь разомкнута. Режим холостого хода характеризуется повышенным напряжением (60—80 В). Точка D соответствует режиму короткого замыкания при зажигании дуги и ее замыкании каплями жидкого электродного металла. Короткое замыкание характеризуется малым напряжением, стремящимся к нулю, и повышенным, но ограниченным током.

Для обеспечения устойчивости горения дуги с возрастающей характеристикой применяют источники сварочного тока с жесткой или возрастающей характеристикой (сварка в защитных газах плавящимся электродом и автоматическая под флюсом током повышенной плотности).

Для питания сварочной дуги применяют источники переменного тока (сварочные трансформаторы) и источники постоянного тока (сварочные выпрямители и генераторы). Источники переменного тока более распространены, так как обладают рядом технико-экономических преимуществ. Сварочные трансформаторы проще в эксплуатации, значительно долговечнее и обладают более высоким КПД, чем выпрямители и генераторы постоянного тока. Однако в некоторых случаях (сварка на малых токах покрытыми электродами и под флюсом) при питании переменным током дуга горит неустойчиво, так как через каждые 0,01 с напряжение и ток дуги проходят через нулевые значения, что приводит к временной деионизации дугового промежутка. Постоянный ток предпочтителен в технологическом отношении: при его применении повышается устойчивость горения дуги, улучшаются условия сварки в различных пространственных положениях, появляется возможность вести сварку на прямой и обратной полярностях и т. д. Последнее вследствие большего тепловыделения в анодной области дуги позволяет проводить сварку сварочными материалами с тугоплавкими покрытиями и флюсами.

Для питания сварочной дуги применяют источники переменного тока — сварочные трансформаторы и источники постоянного тока — сварочные генераторы с приводом от электродвигателя (сварочные преобразователи), сварочные генераторы с приводом от Двигателя внутреннего сгорания (сварочные агрегаты) и полупроводниковые сварочные выпрямители.

Участки I и II ВАХ соответствуют режимам сварки, применяемым при ручной сварке плавящимся покрытым электродом, а также неплавящимся электродом в среде защитных газов. Механизированная сварка под флюсом соответствует II области и частично захватывает III область при использовании тонких электродных проволок и повышенной плотности тока, сварка плавящимся электродом в защитных газах соответствует III области ВАХ. Для питания дуги с падающей или жесткой ВАХ применяют источники питания с падающей или пологопадающей внешней характеристикой. Для питания дуги с возрастающей ВАХ применяют источники тока с жесткой или возрастающей внешней характеристикой. .

В зависимости от свариваемых материалов и применяемых электродов для ручной дуговой сварки применяют источники переменного или постоянного тока с крутопадающей характеристикой. Основным рабочим инструментом сварщика при ручной сварке служит электрододержатель, который предназначен для зажима электрода и подвода сварочного тока. Применяют Электрододержатели пружинного и пластинчатого типов (рис. 37).

Источники сварочного тока. Для сварки под флюсом применяют источники переменного и постоянного тока с пологопадающей характеристикой. Используют преимущественно источники перемен-^ного тока в связи с большей экономичностью и хорошей устойчивостью горения дуги под флюсом. Для этой цели серийно выпускают трансформаторы ТСД-500-1, ТСД-1000-4 и ТСД-2000 в однокорпус-ном исполнении, со встроенными дросселями, с дистанционным управлением.

В промышленности наиболее широко применяют источники 211Ат, 1б9уь, 1'.°Тт, Z5Se, 1ч2]Г WQ H 60Со (табл. 4), реже146 Sm, 165 Ей, l!3Qd и др. (табл. 5) в связи с их высокой стоимостью, сложностью получения исходного сырья и трудностью отделения сопутствующих примесей.

Для дефектоскопии изделий большой толщины и сложной формы применяют источники тормозного излучения с энергией до нескольких десятков МэВ. Такими источниками излучения являются электростатические генераторы, ускорители прямого действия, бетатроны, линейные ускорители, микротроны.

В радиометрической дефектоскопии с использованием радиоактивных источников в основном применяют источники •у-излучения. Источники излучения других видов используют недостаточно.

Наплавку выполняют на наплавочных установках УД-209, У-653 или созданной на базе токарного станка, а также наплавочного станков. Для создания газопламенной защиты установку оснащают горелкой, системой питания горелки газами и системой охлаждения горелки и наплавляемой детали. Для питания дуги применяют источники с пологопадающей или жесткой характеристикой: ВС-600, ВДУ-505, ВДУ-50, ВДУ-601, ПСГ-500 и др. «Плюс» источника питания подключают к горелке.




Рекомендуем ознакомиться:
Пренебречь вследствие
Пренебрегая сопротивлением
Преобладающем большинстве
Предполагает использование
Преобразований уравнений
Преобразования электрического
Преобразования кинетической
Преобразования механической
Преобразования поступательного
Преобразования вращательного
Преобразование кинетической
Преобразование переменного
Преобразованию координат
Преобразователь изображения
Предполагает существование
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки