Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Разрушения определение



Рассмотренные основные схемы зарождения трещин показывают, что разрушение металлов с разной решеткой и микроструктурой может начинаться по-разному. Но в итоге, сопротивляемость металла или сплава разрушению и характер разрушения определяются условиями, в которых оказывается возникшая по тому или иному механизму микротрещина. Вторая стадия разрушения — распространение трещины — является решающей П8]-

Область упругих деформаций в большинстве применяемых на практике материалов очень незначительна (например, для стали пределу упругости соответствует значение е порядка 0,01). Поэтому наибольшие деформации, которые может выдержать данный материал без разрушения, определяются главным образом величиной области текучести. Материалы, для которых эта область мала, способны выдерживать без разрушения только малые деформации — эта материалы хрупки. Материалы же, у которых область текучести велика, способны без разрушения выдерживать большие деформации. Такие материалы называют вязкими. Например, чугун и сталь (как видно из рис. 257)

Рассмотренные основные схемы зарождения трещин показывают, что разрушение металлов с разной решеткой и микроструктурой может начинаться по-разному. Но в итоге, сопротивляемость металла или сплава разрушению и характер разрушения определяются условиями, в которых оказывается возникшая по тому или иному механизму микротрещина. Вторая стадия разрушения — распространение трещины — является решающей Ц8].

Ниже мы слегка коснемся статистических аспектов разрушения при растяжении слоистых материалов в процессе докритического роста трещин, связанного с накоплением повреждений. Изменчивость и масштабный эффект разрушения определяются только этой фазой разрушения. Для читателя, интересующегося вопросами вязкости разрушения и механики неустойчивого разрушения композитов, можно рекомендовать гл. V или работы [5, 11, 28, 35].

Согласно [48] предельное состояние тел с трещинами в условиях ползучести характеризуется двумя поверхностями вязкости разрушения: пороговой, отвечающей началу медленного роста трещины, и критической, связанной с неустойчивым быстрым распространением трещины. Между указанными областями находится область медленного роста трещин ползучести. Нагру-жение в области параметров трещиностойкости ниже пороговых не приводит к развитию трещин в заданном температурно-временном интервале. Пороговые и критические значения вязкости разрушения определяются температурно-временньши условиями эксплуатации и с увеличением длительности эксплуа-

Доли влияния crj и от/ на процесс разрушения определяются функцией ю, поэтому последние должны быть обратно пропорциональными плотности распределения напряжений и деформаций II рода или вероятности наступления соответствующего события.

термической деформации изменением параметров теплового воздействия на конструктивный элемент показана в работе [73]. Условия образования термоусталостного' разрушения определяются видом напряженного состояния в опасном объеме при термоциклическом яатружении [78]. Характер напряженного состояния зависит прежде всего от геометрии конструктивного элемента, а также от особенностей теплового воздействия. Наряду с линейным напряженным состоянием, реализующимся, например, в крайних точках опасного сечения лирообразного компенсатора трубопровода (рис. 6,а) в кромках сопловой (рис. 6,6) и рабочей лопаток, а также в особых точках конструктивных элементов (например, дно лопаточного паза обода диска),

Кинетика накопления повреждаемости и механизм разрушения определяются прежде всего уровнем амплитуды нагружения, в зависимости от которого на кривой усталости можно выделить следующие четыре области [71] (рис. 14):

В настоящее время запас прочности и условия разрушения определяются не только с учетом истории деформирования и термомеханических условий деформации, но и с использованием математической теории надежности и вероятностных методов математической статистики [62 — 64].

Условия возникновения разрушения определяются циклическими и монотонными процессами накопления пластических деформаций и соответствующего повреждения (исчерпания ресурса пластичности). Поэтому для определения потери несущей способности элементов конструкций при длительном циклическом на-гружении при повышенных температурах требуется анализ кинетики полей деформаций (по этапам нагружения) вычислительными методами, что требует от ЭВМ повышенной емкости памяти и быстродействия.

Вероятностная природа усталостного разрушения, зависящего от дефектов структуры и поверхности металла, отражается на закономерностях подобия при этих разрушениях. С увеличением напрягаемых переменными напряжениями объемов увеличивается вероятность ослабления сопротивления металла разрушению более значительными дефектами и их сочетанием, уменьшается предел усталости, ослабляется рассеяние. Влияние абсолютных размеров на усталостные свойства металла возрастает с увеличением его неоднородности, особенно сильно проявляясь на литых и крупнозернистых структурах. С уменьшением вероятности разрушения влияние абсолютных размеров ослабевает, так как в соответствии со статистическими представлениями рассеяние уменьшается с увеличением напрягаемых объемов, и кривые усталости для низких вероятностей разрушения при различных размерах сечений сближаются. При сложных напряженных состояниях усталостные разрушения для металлов в вязком состоянии в основном определяются максимальными или октаэдрическими касательными напряжениями, как это следует, например, из данных исследования усталости конструкционных сталей. Большинство результатов укладывается между предельными шестиугольником касательных напряжений и эллипсом октаэдрических. Для металлов в хрупком состоянии разрушения определяются главными растягивающими нормальными напряжениями, они располагаются ближе к предельному квадрату предельных нормальных напряжений. Форма усталостного излома при кручении для вязких металлов свидетельствует о зарождении усталостного разрушения по направлению действия наибольших касательных напряжений. Для хрупких металлов трещина возникает сразу в направлении действия наибольших нормальных напряжений. Развитие трещины обычно следует поверхностям наибольших нормальных напряжений. а Для усталостных раз- "*"' """ рушений имеет значение сочетание переменной и статической напряженности, характеризуемое асимметрией цикла, ко- -20 эффициент которой яв-

ной формы и др.). Таким образом, сопротивление деформированию носит устойчивый или неустойчивый характер. Устойчивое сопротивление деформированию обычно сопровождается с ростом внешней нагрузки (например, при нагружении монотонно возрастающей силой). Переход из устойчивого в неустойчивое состояние сопровождается снижением интенсивности роста или спадом внешней нагрузки и называется предельным состоянием, а параметры, соответствующие ему, - критическими (критическая сила, деформация, напряжение, энергия). Формы потери устойчивости сопротивления деформации разнообразны, например, переход металла из упругого в пластическое состояние, локализация деформаций (шейко-образование) при растяжении, потеря устойчивости первоначальной формы при действии напряжений сжатия и др. Разрушение нередко происходит при нормальных условиях эксплуатации конструкций, когда в целом металл испытывает макроупругие деформации. Такие разрушения, как правило, реализуются при наличии дефектов и конструктивных концентраторов. Последние вызывают локальные перенапряжения и образование микротрещин. Трещины в металле могут существовать и до эксплуатации конструкции, например, холодные и горячие трещины в сварном соединении. При рабочих нагрузках, вследствие действия временных факторов разрушения, происходит медленный, устойчивый рост исходных трещин и при определенных условиях наступает период неустойчивого (быстрого) распространения и окончательного разрушения. Определение критических параметров неустойчивости росту трещин является основной задачей механики разрушения. Критерии механики разрушения, как и феноменологические теории прочности, постулируются на основании какого-либо силового, деформационного или энергетического параметра R (рис.2.7). Условием неустойчивости тела с трещиной является (быстрое распространение трещины).

1. Составление схемы разрушения, выявление первичного разрушения; определение на детали месторасположения излома, в частности, не совпадает ли место разрушения с зоной действия наибольших напряжений, имеются ли в детали конструктивные концентраторы напряжений, как взаимно расположены концентраторы и место излома, а также очаг излома. Выявление в изломе металлургических дефектов, связи очага излома с дефектами, коррозионными, эррозионными и другими повреждениями.

5. Определение на поверхности излома наличия достаточно резко разграниченных макроскопически различимых по строению и цвету зон и участков, что будет свидетельствовать о протекании разрушения во времени; наличия различных макроскопических знаков — рубцов, ступенек, усталостных линий и т. д.

Число циклов до разрушения — Определение 120

Число циклов до разрушения — Определение 189

Вне зависимости от метода расчета, прямого или косвенного, необходимо располагать механическими характеристиками для угловых швов, которые бы правильно отражали наступление предельного состояния разрушения. Определение механических характеристик

Определение вероятности возникновения течи или разрушения является, по существу, задачей определения прочности и ресурса элементов конструкций, содержащих дефекты типа трещин, в вероятностном аспекте.

Выбор коэффициента безопасности, установление возможного вида разрушения, определение соответствующего предела прочности и расчет напряжений являются важными этапами использования гипотез разрушения при сложном напряженном состоянии в процессе проектирования конструкций. Подстановка расчетного напряжения вместо предела прочности и использование знака равенства в формулировке гипотезы разрушения превращает ее в средство расчета, благодаря которому определяются допустимые размеры конструкции. Таким образом, правильный выбор соответствующей гипотезы разрушения является одним из важнейших звеньев процесса расчета и конструирования.

13.8.3. Точность определения нагрузки при ударных испытаниях с осциллографированием и определение динамической вязкости разрушения

Определение работы, поглощенной при ударном испытании, планиметрированием осциллограмм нагрузка—прогиб и непосредственное ее измерение по отклонению маятника дают близкие результаты (рис. 13.24) [19]. Однако это не доказывает, что нагрузка при осциллографиро-вании измерена достаточно точно. При хрупком разрушении, т. е. при малых значениях прогиба, даже при существенном различии в максимальной нагрузке могут быть получены близкие значения работы, поглощенной при испытании образцов. В то же время основным назначением измерения нагрузки при ударных испытаниях является определение параметра вязкости разрушения при динамическом нагруже-нии Кр. Для определения этой характеристики необходимо существенно ограничить пластическую деформацию у вершины трещины, т. е. в

Определение вязкости разрушения. Согласно получившему уже значительную апробацию проекту ГОСТа, в основу которого положена рекомендация по стандартизации PC 3642—72 [4], вязкость разрушения определяют следующим образом.




Рекомендуем ознакомиться:
Размерной стойкости
Размерного соответствия
Размерность поверхности
Размерности пространства
Размножения дислокаций
Размольного оборудования
Разнообразие применяемых
Разнообразные технологические
Различными нагрузками
Разнообразное применение
Разнородных соединений
Разностью концентраций
Разностью скоростей
Разностные уравнения
Разностного приближения
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки