Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Реактивных самолетов



Как показывает опыт изготовления и эксплуатации сварных конструкций энергоустановок, работающих при высоких температурах, хрупкость материала при комнатной температуре может в определенных случаях привести к разрушению изделия при отсутствии рабочих напряжений. Необходимо учитывать, что непосредственно после сварки в изделии возникают остаточные напряжения, имеющие в массивных узлах характер реактивных сварочных напряжений (глава III). Скрытая энергия, накопившаяся в изделии при наличии в нем реактивных напряжений, может достигать очень высоких значений, превосходящих величину энергии, которая может быть поглощена хрупким материалом, особенно при наличии различных концентраторов напряжений в виде резкого изменения формы сечения или дефектов в швах (непроваров, трещин и других). В этих условиях зародышевая трещина, идущая от концентратора напряжений, будет развиваться дальше, приводя к полному разрушению конструкции. При сборке, гидравлических испытаниях узла -и в процессе пуска установки конструкция также подвергается воздействию напряжений при комнатной температуре. При наличии конструктивных концентраторов напряжений и хрупком материале и в этих случаях может произойти разрушение изделия.

Закрепление свариваемых деталей существенно изменяет напряженное состояние изделия (фиг. 28), вызывая появление «реактивных» напряжений, имеющих преимущественно знак растяжения. Суммарные напряжения от сложения реактивных и сварочных напряжений уже не уравновешены в пределах сечения, как это имеет место при действии сварочных напряжений, а имеют один знак, лишь несколько изменяясь по величине. Если при действии сварочных напряжений растянутые зоны имеют относительно небольшую ширину, то при наличии закрепления они распространяются на все сечение. В сварных конструкциях турбомашин с большой толщиной и жесткостью' свариваемых деталей вероятность появления реактивных напряжений весьма

При сварке стыка тонкостенной трубы (фиг. 29, а) жесткость соединяемых деталей является сравнительно небольшой и возможность развития реактивных напряжений мала. Можно считать, что в подобном сварном стыке имеются лишь сварочные напряжения.

В отличие от этого, при сварке между собой дисков ротора (фиг. 29, б) деформация шва в процессе сварки затруднена вследствие жесткости примыкающих к шву дисков. В результате после сварки в перемычках между дисками неизбежно возникновение реактивных тангенци-альных и осевых напряжений растяжения и изгиба. Подобно этому при вварке сопловой коробки во внутренний цилиндр (фиг. 29, в) также неизбежно возникновение реактивных тангенциальных и радиальных напряжений растяжения, обусловленных жесткостью стенки цилиндра. Появления реактивных напряжений следует ожидать, например, при сварке замыкающих стыков паропроводов и в ряде других случаев. Величина их обычно тем больше, чем меньше расстояние между закреплениями.

Наличие реактивных напряжений одного знака, не урановешенных в пределах сечения и распределенных по большой площади, обусловливает накапливание в изделии больших запасов скрытой потенциальной энергии и может снизить работоспособность конструкции. Можно предполагать, что скрытая энергия способствует прежде всего процессу разрушения. Поэтому, например, при наличии в изделии различных зародышевых дефектов в виде надрывов, трещин и других накопленная скрытая энергия реактивных напряжений может приводить к их раскрытию вплоть до полного разделения деталей. Самопроизвольные разрушения, происходящие при полном отсутствии приложенных нагрузок и имеющие характер взрыва, свидетельствуют об огромных запасах энергии, которая может накопиться в конструкциях или деталях конструкции. Разрушения от действия реактивных напряжений могут происходить в процессе как изготовления, так и эксплуатации конструкции.

Реактивные напряжения могут также снизить выносливость изделия при знакопеременной нагрузке. При изготовлении конструкции из пластичного материала, отсутствии концентраторов напряжений и дефектов, а также при статическом приложении нагрузки можно, по-видимому, считать, что наличие-реактивных напряжений не повлияет на работоспособность конструкции. Однако для большинства конструкций сложной формы, какими, например, являются узлы турбин, сочетание указанных благоприятных факторов, как правило, не имеет места.

Возможность снижения работоспособности конструкции при наличии в ней реактивных напряжений требует принятия ряда мер, обеспечивающих снижение ИХ вели- Фиг. 28. Эпюры реактивных остаточных напряжений' чины или полное снятие в сваРном соединении в стык с наличием закрепления. К ним могут быть отнесены:

При сварке деталей большой жесткости из перлитных или хромистых ферритомартенситных сталей (роторов, цилиндров высокого давления и т. п.)> снижение реактивных напряжений может быть, как правило, достигнуто введением общего подогрева изделия. Обычно в этих случаях температура подогрева берется на 100—200° больше, чем это требуется при сварке конструкций из этих сталей относительно небольшой толщины. При этом

Другим технологическим приемом снижения реактивных напряжений является проколачивание сварных швов. При проколачивании зона шва подвергается принудительному расширению, что несколько снижает жесткость изделия, а следовательно, и величину реактивных напряжений. Использование проколачивания является в ряде случаев полезным и с точки зрения уменьшения сварочных деформаций. Эта операция является желательной в сварных соединениях перлитных сталей.

Назначение термической обработки для снятия реактивных напряжений определяется типом конструкции и условиями ее работы. Эту операцию следует вводить прежде всего в изделиях, работающих в условиях, при которых установлено отрицательное влияние сварочных (реактивных) напряжений на прочность. Обязательным условием снятия реактивных напряжений является общая термическая обработка конструкции вместе с закреплениями. Поэтому, например, при общей термической обработке ротора из дисков, когда диски, определяющие жесткость изделия, подвергаются нагреву вместе со швами, реактивные напряжения будут сняты. В то же время, например, в результате проведения местной термической обработки замыкающих стыков паропроводов, при которой зона закрепления не подвергается нагреву, следует ожидать не снижения, а увеличения реактивных напряжений. В отличие от этого, местная термическая обработка свободных стыков паропровода, как правило, обеспечивает заметное снижение сварочных напряжений благодаря тому, что в этом случае вся зона пластических деформаций растяжения в шве и околошовной зоне, обусловливающая их возникновение и развитие, подвергается нагреву.

Основным назначением закрепления при сварке является уменьшение угловых деформаций вследствие поворота свариваемых деталей друг относительно друга. В то же время наличие закрепления не должно препятствовать поперечной усадке стыка и вызывать тем самым появление значительных реактивных напряжений, могущих привести к разрушению изделия

Повышение скорости и дальности (при выключенном ВРД) было достигнуто у самолета Н при сохранении полетного веса на уровне опытных истребителей с поршневыми двигателями (ниже 4 т). Это явилось следствием применения более совершенной (с меньшим удельным весом) силовой установки. Самолет Н строился серийно. В его конструкции был реализован ряд новшеств, характерных для будущих реактивных самолетов (тонкий профиль крыла, камера сгорания ВРД с регулируемой в полете площадью выходного сопла и др.). Создание самолетов с комбинированными силовыми установками выдвинуло перед институтами ЦАГИ, ЦИАМ, ВИАМ новые проблемы околозвуковой и сверхзвуковой аэродинамики, теоретических и экспериментальных работ по реактивным силовым установкам и материалам для них. Все это явилось базой для последующих работ по скоростным реактивным самолетам с турбореактивными двигателями.

Развитие авиационной техники в послевоенные годы характеризовалось прежде всего интенсивной разработкой конструкций и промышленным освоением турбореактивных двигателей и первых реактивных самолетов различного назначения.

В начальной стадии работ для ознакомления с зарубежным опытом были закуплены образцы некоторых английских турбореактивных двигателей, а также использованы образцы трофейных двигателей немецких фирм. Первые отечественные двигатели РД-45,РД-500, РД-10 и РД-20 имели силу тяги от 800 до 2000 кг. Однако для становления и развития реактивной авиации были необходимы более мощные и отличающиеся лучшими удельными параметрами крупноразмерные турбореактивные двигатели с силой тяги 5000—9000 кг — для тяжелых реактивных самолетов среднего и большого радиусов действия и высоконапряженные двигатели с минимальным удельным весом и кратковременным форсированием тяги до 3000—4000 кг — для скоростных реактивных истребителей.

Работы по выбору новой аэродинамической схемы скоростных реактивных самолетов велись в Советском Союзе с 1942—1943гг. в ЦАГП и ЦПАМ И. В. Остославским, Я. М. Серебрийским, Г. П. Свищевым (ныне член-корреспондент АН СССР), В. В. Струминским (ныне академик) и др. На протяжении 1946—1949 гг. конструкторским бюро А. С. Яковлева, А. И. Микояна, С. А. Лавочкина и П. О. Сухого осуществлялась отработка конструкций основных узлов этих самолетов.

На истребителе Ла-176 с двигателем ВК-1 и с крылом увеличенной стреловидности (45°) в декабре 1948 г. — январе 1949 г. в полете со снижением впервые в СССР была достигнута скорость, равная скорости звука. Через год (в январе — феврале 1950 г.) скорость звука неоднократно превышалась на 3—7% в горизонтальном полете на истребителе МиГ-17 (модификации МиГ-15) и несколько позднее — на Як-50, также имевших крылья с углом стреловидности 45°. При этом истинные величины скоростей, достигнутые отечественными реактивными самолетами в 1947—1950 гг. (1070 км /час для МиГ-15, 1105 — для Ла-176, 1114— для МиГ-17и1170 км/час для Як-50), превзошли официальные абсолютные мировые рекорды, регистрировавшиеся ФАЙ и устанавливавшиеся до того времени, как правило, на лучших образцах реактивных самолетов зарубежной военной авиации (рис. 108, а).

Проектирование и испытание тяжелых реактивных самолетов велись конструкторскими коллективами А. Н. Туполева и С. В. Ильюшина10. В короткий срок ими был разработан ряд конструкций самолетов этой группы, из которых наиболее известен фронтовой цельнометаллический бомбардировщик Ил-28 (рис. 109) с двумя турбореактивными двигателями ВК-1 (на первых образцах — РД-45), созданный в 1948 г.

В первые послевоенные годы не существовало технических предпосылок для разработки конструкций тяжелых реактивных самолетов с дальностью действ'ия более 5000 км. Поэтому в 1946—1951 гг. продолжались прерванные войной работы по конструированию и постройке самолетов дальнего и сверхдальнего действия с мощными высотными многоцилиндровыми поршневыми двигателями.

На протяжении последнего десятилетия—со второй половины 50-х годов — советская авиационная техника достигла новых качественных успехов. В числе их наряду с постройкой крупнотоннажных реактивных самолетов различных назначений с дозвуковыми скоростями и большой дальностью полета, введением в эксплуатацию самолетов гражданской авиации с газотурбинными (турбовинтовыми и турбовентиляторными) двигателями, тяжелых и средних турбовинтовых вертолетов особенно существенным явилось освоение сверхзвуковых скоростей в практике военной авиации.

Истребитель вертикального взлета и посадки отличается удачным сочетанием высоких летно-технических качеств современных боевых реактивных самолетов с возможностью взлета и посадки на самых малых и элементарно подготовленных взлетно-посадочных площадках. На нем установлен турбореактивный двигатель с поворотными выходными соплами, изменяющими направление действия тяги; управление им на малых скоростях полета и на режимах вертикального взлета и посадки выполняется посредством специальных реактивных рулей.

Накопление опыта проектирования, постройки и эксплуатации тяжелых реактивных самолетов и успешное освоение советским гражданским воздушным флотом первого реактивного пассажирского самолета Ту-104 сделали возможным начиная с 1957 г. широкое внедрение в гражданскую авиацию газотурбинных двигателей. Это качественно изменило возможности гражданской авиации и превратило ее в одно из основных средств массовых пассажирских перевозок на линиях средней и большой протяженности.

Решая задачу, поставленную Программой КПСС,— превратить воздушный транспорт в массовый вид пассажирского транспорта, охватывающий все районы страны, и обеспечить в этой области дальнейшее быстрое совершенствование реактивной техники,—советские авиастроители передали в регулярную эксплуатацию на внутренних и международных воздушных линиях различные типы реактивных самолетов, выполнявших к 1965 г. около 80% всего объема перевозок, осуществляемых Аэрофлотом. Значительно расширилась сфера применения авиации в народном хозяйстве СССР: самолеты и вертолеты используются для несения лесопатрульной службы, для геологической разведки и аэрофотосъемки, для доставки срочных грузов в труднодоступные области страны и оказания помощи населению отдаленных районов, для проведения сельскохозяйственных авиационно-химических работ и т. д.; крупнотоннажные вертолеты все шире применяются при производстве сложных строительно-монтажных операций. Получив высокую оценку за рубежом, советские самолеты пользуются большим спросом на мировом авиационном рынке.




Рекомендуем ознакомиться:
Разработки конструктивно
Разработки мероприятий
Разработки оформления
Разработки рекомендаций
Разработки стандартов
Различными сечениями
Разработкой технологии
Разработку технологии
Разрешается принимать
Разрешается устанавливать
Разрешающему уравнению
Разрешена относительно
Разрешить относительно
Разреженной атмосфере
Разрезными пружинными
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки