Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Релаксация напряжения



Упругопластическое деформирование металла приводит к возникновению в поверхностном слое заготовки остаточных напряжений, растяжения или сжатия. Напряжения растяжения снижают сопротивление усталости металла заготовки, так как приводят к появлению микротрещин в поверхностном слое, развитие которых ускоряется действием корродирующей среды. Напряжения сжатия, напротив, повышают сопротивление усталости деталей. Неравномерная релаксация остаточных напряжений искажает геометрическую форму обработанных поверхностей, снижает точность их взаимного расположения и размеров. Релаксация напряжений, продолжающаяся в процессе эксплуатации машин, снижает их качество и надежность.

Движение вакансий задерживается скоплениями примесных атомов, границами фаз и структурных составляющих, поверхностями кристаллических блоков (внутризеренные кристаллические образования размером в несколько сотых долей микрона). Распространение первичных трещин эффективно блокируют включения пластичных фаз, расположенные на пути трещины, в которых происходит релаксация напряжений. Измельчение кристаллических блоков, увеличение степени их разориентировки, а также искажения атомно-кристаллической решетки, вносимые примесями и возникающие при наклепе, выделении вторичных фаз и образовании неравновесных (закалочных) структур, сокращая пробег дислокаций, повышают

В деталях с заданными постоянными деформациями (затянутые крепежные винты, детали на посадках с натягом и т. п.) наблюдается самопроизвольное постепенное падение напряжений натяга, т. е. релаксация напряжений.

Анализ дислокационных структур, формирующихся в приповерхностном слое при ионной имплантации, показывает, что фактически с помощью пластической деформации в приповерхностном слое толщиной до 100 мкм происходит релаксация напряжений от легируемого в результате внедрения ионов поверхностного слоя толщиной не более нескольких долей микрометра [85]. Такие напряжения являются результатом действия статических и динамических напряжений. Природа напряжений весьма сложна, теоретически ч экспериментально вопрос о

Увеличение дозы облучения (кривые 3, 4) вызывает полное снятие сжимающих и появление растягивающих напряжений с максимумом на глубине 0,25 мкм. С уменьшением глубины слоя растягивающие напряжения уменьшаются, переходя в напряжения сжатия в самых тонких слоях. Приведенные результаты свидетельствуют о том, что ионная имплантация инициирует развитие процессов релаксации остаточных напряжений в тонком поверхностном слое, при этом на глубине 0,25 мкм появляются растягивающие напряжения. Однако при увеличении дозы облучения растягивающие напряжения исчезают, а сжимающие в слое до 1,5 мкм вновь возрастают, достигая примерно исходной величины. Релаксация напряжений связана с пластической деформацией, которая вызывается ионной имплантацией в приповерхностном слое титановых сплавов. Этот вывод согласуется с результатами электронно-микроскопических исследований дислокационных структур а-же-леза, формирующихся в приповерхностном слое при ионной имплантации и в пластически деформированных образцах, показывающих полное тождество таких структур [85]. При этом установлено также увеличение плотности дислокаций с увеличением дозы имплантируемых ионов, что может служить косвенным объяснением увеличения сжимающих напряжений, наблюдавшегося при исследовании имплантированных образцов титановых сплавов при максимальной дозе облучения.

Белый слой, характеризующийся благоприятным сочетанием остаточных макронапряжений и структуры, наиболее эффективно повышает трещиностойкость стали и является весьма перспективным способом повышения стойкости стальных деталей к коррозионному растрескиванию. Сопротивление стали коррозионному растрескиванию зависит от содержания в ней углерода. Так же, как и сопротивление коррозионной усталости, максимальная стойкость к коррозионному растрескиванию наблюдается у стали с содержанием углерода 0,4-0,65 % (рис. 31). Это связано с тем, что при указанном содержании углерода количество остаточного аустенита небольшое (до 10 %) и увеличивается с ростом содержания углерода в стали. При этом уменьшается способность металла к релаксации локальных напряжений вследствие уменьшения подвижности дислокаций. В сталях, легированных хромом в количестве 12 % и более, релаксация напряжений облегчается вследствие уменьшения активности углерода, переходящего в карбиды. В результате этого, а также из-за увеличения пассивирующего действия хрома рост трещин резко замедляется.

В упругих элементах гистерезис ег = 0,5-5-1,5%. f Причиной выхода из строя упругого элемента может быть релаксация напряжений (пластическое последействие).

Большое влияние на динамику распространения глубины термоусталостных трещин, как и на их возникновение, оказывает релаксация напряжений в металле.

Полная релаксация напряжений в вершинах трещин не происходит даже при превращении их в сферические поры, и всегда будет иметь место концентрация, обусловленная формой трещины. Такая концентрация для трещин, нормальных к оси нагружения, описывается известной формулой Инглиса [18]:

учитывая, что релаксация напряжений в данном случае складывается из двух процессов — ползучесть в пластине и ползучесть в покрытии — при обозначении, принятом на рис. 1,

Соотношения (2.10) и (2.11) свидетельствуют о необходимости введения корректировок в определяемую вязкость разрушения не только на геометрию образца, но и на геометрию фронта трещины. Ее длина определяется пластическими свойствами материала и различиями в напряженном состоянии материала вдоль фронта трещины. Применительно к плоскому элементу конструкции имеет место зависимость вносимой энергии в образец при его одноосном растяжении от ширины пластины (2.4). Это связано с тем, что по мере увеличения ширины пластины появляется возможность немонотонного нарушения сплошности материала в результате релаксации напряжений после страгивания трещины в условиях вязкого поведения материала. Трещина производит скачкообразное перемещение, после чего происходит релаксация напряжений в вершине переместившейся трещины и она останавливается. Для ее дальнейшего продвижения нужно повысить уровень напряжения, что сопровождается следующим скачком трещины. После каскада скачков трещины происходит окончательное разрушение пластины.

Процесс нагружения изделия происходит значительно медленнее, чем распространение упругого импульса в объекте. При этом внутренние напряжения в изделии распределяются неравномерно, поскольку по конструкции и внутренней структуре объекты нагружения всегда неоднородны. В некоторой области твердого тела локальные напряжения достигают предельного значения и возникает разрыв внутренних связей. В результате происходит снятие (релаксация) напряжения в этой области. Накопленная здесь энергия быстро выделяется и определенная доля ее излучается в виде упругого импульса — сигнала АЭ. Существует ряд теорий — моделей АЭ, — уточняющих и детализирующих этот процесс.

3. Релаксация напряжения. Так как коэффициенты теплового сжатия волокон и смолы различны, то в процессе изготовления композитов'на поверхности раздела возникают остаточные напря-; жения. Эти напряжения могут быть сжимающими или растягивающими в радиальном по отношению к оси волокна направлений в зависимости от коэффициентов расширения волокна и смолы и объемного содержания волокна в композитах. Донер и Новак [32] установили, что для углепластика с относительным объемным содержанием наполнителя 55 об. % остаточные нормальные напряжения сжатия составляют от 0,21 до 1,75 кгс/мм2, что приводит к. увеличению прочности сцепления компонентов и в конечном счете к уменьшению критической длины волокна.

Вязкость разрушения, или сопротивление материала распространению трещины, может быть определена также при помощи понятия критических скоростей высвобождения энергии при продвижении трещины GIC, связанных с Kic- Многочисленные авторы (см., например, [18—23]) исследовали распространение разрушения, изучая механизмы рассеяния энергии, например выдергивание волокна, нарушение связи волокно — матрица, релаксация напряжения, разветвление трещины и пластическое деформирование матрицы. Механизмы рассеяния энергии, знание которых позволяет определить вязкость разрушения, сложны по своей природе и зависят от прочности связи волокно — матрица, типа матрицы (хрупкая или пластичная), диаметра волокна, прочности волокна и т.д. Поэтому только тщательное исследование поверхностей, образовавшихся в результате разрушения, дает основание для установления соответствия экспериментально определенных значений G,-c тому или иному механизму. Так, например, было сделано предположение о том, что вязкость разрушения стекло- и боропластиков связана главным образом с величиной упругой энергии, накопленной в волокнах, а соответствующая характеристика углепластиков на эпоксидном связующем— с работой докритического распространения микротрещины и работой выдергивания разорванных волокон.

Релаксация напряжения. Закрепим верхний конец образца из эластомера, растянем его и через динамометр Д закрепим нижний конец (рис. 1.31, а). Будем отсчитывать показания динамометра через равные промежутки времени и по этим показаниям определять напряжения а, действующие в образце. Как показывает опыт, эти напряжения не остаются постоянными, а непрерывно падают от на-, чального значения сг0 до некоторой равновесной величины а^, достигаемой теоретически через t-+ оо (рис. 1.31, б). В этом состоит процесс релаксации (рассасывания) напряжений в эластомере. Количественно он описывается следующим приближенным уравнением: '••'•'

Рис. 1.31. Релаксация напряжения в эластомере:, а — схема установки для наблюдения релаксации напряжения; б — релаксационная

3. Релаксация напряжения. После достижения определенной величины относительной деформации рост ее прекращался и наблюдалось временное падение напряжения. Из полученной зависимости определяли зависимость скорости релаксации напряжения а от падения напряжения Да.

При высоких температурах с увеличением частоты нагружения на сопротивление усталости будут оказывать влияние и такие процессы, как релаксация напряжения, ползучесть, фазовые изменения, в своей совокупности они могут как понижать, так и повышать сопротивление усталости.

Достоинства металлических прокладок следующие: достаточная герметичность при высоких давлениях и температурах среды; коэффициент линейного расширения близок к коэффициенту линейного расширения материала фланца и шпилек или болтов; возможность повторных использований после ремонта. К недостаткам следует отнести: необходимость создания больших усилий для обеспечения герметичности соединения; относительно низкие упругие свойства; значительная релаксация напряжения и относительно высокая стоимость изго-

Релаксация напряжения резины при осевом сжатии заключается в определении (ГОСТ 9982—62) зависимости напряжения (силы реакции) сжатого до постоянной деформации образца от времени нахождения его в деформированном состоянии и определяется:

Релаксация напряжения резины 241

Релаксация напряжения резины при сжатии, т. е. сила реакции сжатого образца, определяется (ГОСТ 9982—76) методами:




Рекомендуем ознакомиться:
Регенерации отработанных
Регенеративный теплообмен
Регенеративных подогревателях
Различной геометрической
Регенеративного теплообменника
Регистрация параметров
Регистрации деформации
Регистрации ионизирующих
Регистрации напряжений
Регистрации температуры
Регистрирующей аппаратурой
Регистрирующие устройства
Регламентированы стандартами
Регулярной структуры
Различной жесткости
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки