Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Радиальных подшипниках



Производительность обработки при шевинговании за один проход увеличивается в 2—3 раза благодаря сокращению количества циклов до одного и исключению радиальных перемещений стола с обрабатываемым колесом, неизбежных при шевинговании стандартными ше-верами.

На рис. 10.2 изображен график радиальных перемещений w различных точек

ВТД обычно подразделяют на дефектоскопы с проходными и накладными преобразователями. Дефеюххжопы с проходными ВТП чаше всего применяют для автоматизированного или автоматического бесконтактного контроля труб, прутков, проволоки, а также метизов, шариков и роликов подшипников и т.д. Основной режим работы ВТД с проходными ВТП - динамический. Преобразователи таких ВТД, как правило, трансформаторного типа с однородным или неоднородным полем в зоне кон-троля^и включаются они по дифференциальной схеме. Применение ВТП с неоднородным полем обусловлено стремлением уменьшить длину возбуждающей катушки с целью сокращения общей длины ВТП при контроле объектов большого диаметра. Однако при этом приходится принимать меры для стабилизации положения объекта. Для уменьшения возможных радиальных перемещений объекта в ВТП, а также для поддержания коэффициента заполнения на определенном уровне, определяющем чувствительность, дефектоскопы снабжают набором ВТП различного диаметра. При использовании ВТП с однородным полем можно значительно уменьшить число их типоразмеров, компенсируя изменение чувствительности при изменении коэффициента заполнения регулированием возбуждающего тока. В большинстве современных дефектоскопов с проходными ВТП информация выделяется модуляционным способом, поэтому они предназначаются для динамического режима контроля, а для некоторых скорость движения объекта необходимо сохранять постоянной, поскольку при изменении скорости изменяются частотный спектр сигналов и чувствительность дефектоскопа. Некоторые дефектоскопы могут работать и в статическом режиме (при неподвижном объекте), однако этот режим не является основным и обычно используется для настройки прибора.

5) Кольцевые напряжения в несущих огнеупорных слоях футеровки определяют по формулам (13.48), (13.87), (13.88); полученные сжимающие напряжения сравниваются с расчетными сопротивлениями для огнеупорных материалов. Вычисление радиальных перемещений выполняется по формуле (13.122).

На рис. 15.6 приводятся расчетная схема резервуара объемом 20тыс.м3 и эпюры давления, кольцевых усилий, кольцевых напряжений и радиальных перемещений (прогибов).

а - эпюра давления; б - эпюра кольцевых усилий; в - эпюра кольцевых напряжений; г - эпюра радиальных перемещений (прогибов)

ВТД обычно подразделяют на дефектоскопы с проходными и накладными преобразователями. Дефектоскопы с проходными ВТП чаше всего применяют для автоматизированного или автоматического бесконтактного контроля труб, прутков, проволоки, а также метизов, шариков и роликов подшипников и т.д. Основной режим работы ВТД с проходными ВТП - динамический. Преобразователи таких ВТД, как правило, трансформаторного типа с однородным или неоднородным полем в зоне контроля^ включаются они по дифференциальной схеме. Применение ВТП с неоднородным полем обусловлено стремлением уменьшить длину возбуждающей катушки с целью сокращения общей длины ВТП при контроле объектов большого диаметра. Однако при этом приходится принимать меры для стабилизации положения объекта. Для уменьшения возможных радиальных перемещений объекта в ВТП, а также для поддержания коэффициента заполнения на определенном уровне, определяющем чувствительность, дефектоскопы снабжают набором ВТП различного диаметра. При использовании ВТП с однородным полем можно значительно уменьшить число их типоразмеров, компенсируя изменение чувствительности при изменении коэффициента заполнения регулированием возбуждающего тока. В большинстве современных дефектоскопов с проходными ВТП информация выделяется модуляционным способом, поэтому они предназначаются для динамического режима контроля, а для некоторых скорость движения объекта необходимо сохранять постоянной, поскольку при изменении скорости изменяются частотный спектр сигналов и чувствительность дефектоскопа. Некоторые дефектоскопы могут работать и в статическом режиме (при неподвижном объекте), однако этот режим не является основным и обычно используется для настройки прибора.

С помощью дифференциальных ВТП «самосравнения» можно резко повысить отношение сигнал/помеха в дефектоскопии. При этом обмотки преобразователя размещают так, чтобы их сигналы исходили от близко расположенных участков контроля одного объекта. Это позволяет уменьшить влияние плавных изменений электрофизических и геометрических параметров объектов. При использовании проходных преобразователей с однородным магнитным полем в зоне контроля значительно уменьшается влияние радиальных перемещений объекта. Применяя экранные накладные преобразователи, можно практически исключить влияние смещений объекта между возбуждающей и измерительной обмотками. Преобразователи с взаимно перпендикулярными осями обмоток (см. рис. 1, г) нечувствительны к изменению электрофизических характеристик однородных объектов. При нарушении однородности объекта, на-

Чтобы уменьшить влияние края объекта на сигналы ВТП, применяют концентраторы магнитного поля в виде ферритовых сердечников (рис. 2) и электропроводящие неферромагнитные экраны, вытесняющие магнитное поле из занятой ими зоны. При размещении экранов в торцах проходных преобразователей влияние краев объектов контроля уменьшается, но при этом ухудшается однородность поля в зоне контроля. Специальные экраны с отверстиями могут служить «масками», при этом отверстие служит источником магнитного поля, возбуждающего вихревые токи в объекте. При использовании «масок» значительно снижается чувствительность ВТП, но повышается их локальность. Повышения локальности ВТП добиваются также комбинацией кольцевых ферромагнитных сердечников с электропроводящими неферромагнитными (обычно медными) экранами и коротко-замкнутыми витками, вытесняющими магнитный поток из сердечников в зону контроля (рис. 7, а, б) [2]. Кольцевые ферритовые сердечники служат также основой щелевых ВТП, применяемых для контроля проволоки (рис. 7, в, г). Для ослабления влияния радиальных перемещений объекта контроля на сигналы ВТП применяют экранирование магнитопровода вблизи щели с целью повышения однородности магнитного поля в щели.

В дефектоскопах, как правило, используются дифференциальные ВТП самосравнения с малой базой, с однородным и неоднородным полем в зоне контроля. Применение ВТП с неоднородным полем обусловлено стремлением уменьшить длину возбуждающей катушки с целью сокращения общей длины ВТП при контроле объектов большого диаметра. Однако при этом приходится принимать меры для стабилизации положения объекта. Для уменьшения возможных радиальных перемещений объекта в ВТП, а также для поддержания коэффициента заполнения Г на определенном уровне, определяющем чувствительность, дефектоскопы снабжают набором ВТП различного диаметра. При использовании ВТП с однородным полем можно значительно уменьшить число их типоразмеров, компенсируя изменение чувствительности при изменении т] регулированием возбуждающего тока.

Параметры а0, Й0 в (6.12) зависят от упругих констант материала, размеров кольца и значения давления. Зависимость (6.12) хорошо согласуется с экспериментальными замерами радиальных перемещений в пределах линейного участка нагружения. Радиальные перемещения в направлении большей жесткости (?') оказались больше, чем в направлении меньшей жесткости (So)- Данные для численного сравнения, соответствующие материалу Sepcarb-Ш, приведены на с. 192. Расчет параметров, входящих в (6.12), по формулам, приведенным в работе [21], показал, что а0 <* О, Ьа<^ 0. Следовательно, при нагруже-нии колец внешним давлением в направлении, соответствующем ф = О в плоскости кольца*, они являются менее податливыми на радиальное смещение, чем в направлении, соответ-

2. Определение осевых нагрузок. При установке вала на шариковых радиальных подшипниках осевая сила Ra, нагружающая подшипник, равна внешней осевой силе Fa, действующей на вал.

На рис. 9.3 ведущий быстроходный вал установлен на шариковых радиальных подшипниках с упорными кольцами.

установке вала на шариковых радиальных подшипниках осевая сила Fa, нагружающая подшипник, равна внешней осевой силе F \, действующей на вал. Силу FA воспринимает подшипник, ограничивающий осевое перемещение вала под действием этой силы. При установке вала па радиально-упорных подшипниках осевые силы /•'„,

На рис. 14.4 ведущий быстроходный вал установлен на шариковых радиальных подшипниках со стопорными пружинными кольцами. Подшипники установлены по схеме «врастяжку» (см. рис. 3.9). Это решение конструктивно наиболее простое. Однако возможны и другие исполнения этого вала. Некоторые из них показаны на рис. 14.5, а —г. Из условия обеспечения необходимой жесткости вала во всех вариантах подшипники располагают один от другого на расстоянии b = (2,0...2,2)а.

В радиальных подшипниках клиновая форма зазора свойственна самой конструкции подшипника. Она образуется за счет смещения центров цапфы вала и вкладыша (рис. 16.5, а).

В радиальных подшипниках направление оси вращения шариков или роликов в пространстве не изменяется. Поэтому на них не действуют гироскопические моменты. Радиально-упорные подшипники занимают промежуточное положение. Для них

Неточности присоединительных размеюв, отклонения от геометрической формы и расположения поверх юстей, шероховатость по-х поверхностей вала и отверстия юрпуса, а также характер колец влияют на величину зазоров в радиальных подшипниках, а следовательно, на долговечность и точность работы под-шинников и узлов в целом.

2. Упорные подшипники. Работа подпятников в режиме жидкостного трения обеспечивается, как и в радиальных подшипниках, когда гидродинамическое давление в слое смазки, разделяющем трущиеся поверхности, уравновешивает внешнюю нагрузку (рис. 13.7).

В шариковых радиальных подшипниках 6 изгиб вала вызывает перекос подшипника и одностороннюю нагрузку шариков, по величине иногда намного превышающую номинальную нагрузку. Это устранимо заключением подшипника в сферическую обойму 7 или применением двухрядных сферических подшипников 8.

Число шариков г я^2,2Орш/Ощ, где ОрШ -— диаметр окружности, проходящей через центры шариков, Dw — диаметр шарика. Материал проволоки — пружинная сталь с 375...540 ИВ. Толщина проволоки (S«0,25Da,. Дорожки качения формируют прикаткой или шлифованием с последующей прикаткой. Ширина дорожки /—-0,2Л. Углы контакта шариков выбирают в радиальных подшипниках 15...35°, в радиаль-но-упорных 35...45°, в упорных 45...60°.

Наибольший угол наклона вала, работающего в подшипнике скольжения, допускается равным [а] = 0,001 рад; в шариковых -радиальных подшипниках [а] = 0,0012 рад; в радиальных подшипниках с короткими цилиндрическими роликами [а] —- 0,0005 рад; в кони-




Рекомендуем ознакомиться:
Различные коэффициенты
Различные компоненты
Различные кристаллические
Различные мероприятия
Радиальных перегородок
Различные отклонения
Различные постоянные
Различные распределения
Радиальных подшипниках
Различные соотношения
Различные технологические
Различные включения
Различные вспомогательные
Различные зависимости
Различных электролитах
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки