Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Различных процессов



Термодинамика изучает законы превращения энергии в различных процессах, происходящих в макроскопических системах и сопровождающихся тепловыми эффектами. Макроскопической системой называется любой материальный объект, состоящий из большого числа частиц. Размеры макроскопических систем несоизмеримо больше размеров молекул и атомов.

небольшой угол — порядка нескольких минут. Такое строение зерна носит название мозаичной структуры, а составляющие ее блоки называются блоками мозаики. Изменение размеров блоков мозаичной структуры и их взаимной ориентации при различных процессах обработки металла приводит к изменению его свойств. Часто блоки объединяются в более крупные агрегаты — так называемые фрагменты. Каждый фрагмент содержит большое количество блоков. Фрагменты в свою очередь разориентированы относительно друг друга на угол в несколько градусов.

На величину пластической деформации, которую можно достичь без разрушения (предельная деформация), оказывают влияние многие факторы, основные из которых — механические свойства металла (сплава), температурно-скоростные условия деформирования и схема напряженного состояния. Последний фактор оказывает большое влияние на значение предельной деформации. Наибольшая предельная деформация достигается при отсутствии растягивающих напряжений и увеличении сжимающих. В этих условиях (схема неравномерного всестороннего сжатия) даже хрупкие материалы типа мрамора могут получать пластические деформации. Схемы напряженного состояния в различных процессах и операциях обработки давлением различны, вследствие чего для каждой операции, металла и температурно-скоростных условий существуют свои определенные предельные деформации.

Общепринятая модель трещины в механике разрушения - математический разрез в теле из неповрежденного материала. Трещину считают заданной, а ее размер достаточно большим по сравнению с максимальным размером структуры материала - размером зерна, кристаллита, волокна и тому подобное. Такие трещины называют макроскопическими (в отличие от микроскопических трещин, размер которых имеет порадок характерного размера структуры материала или менее). Задача состоит в том, чтобы найти закономерности роста трещины при различных свойствах материала и различных процессах нагружения, а также установить условия, при которых этот рост устойчив, то есть малые приращения нагрузок или малые изменения размеров трещин не приводят к ее интенсивному росту. В действительности физический процесс разрушения состоит из двух стадий. Первая стадия — накопление рассеянных повреждений - может составлять значительную часть общего ресурса (по различным данным от 50 до 90 %). Если в детали или элементе не было начальных технологических трещин, то зарождение первой макроскопической трещины есть результат накопления рассеянных повреждений. Процесс накопления повреждений продолжается и после того, как начался рост трещины, причем зги процессы взаимодействуют между собой.

Общепринятая модель трещины в механике разрушения - математический разрез в теле из неповрежденного материала. Трещину считают заданной, а ее размер достаточно большим по сравнению с максимальным размером структуры материала - размером зерна, кристаллита, волокна и тому подобное. Такие трещины называют макроскопическими (в отличие от микроскопических трещин, размер которых имеет порядок характерного размера структуры материала или менее). Задача состоит в том, чтобы найти закономерности роста трещины при различных свойствах материала и различных процессах нагружения, а также установить условия, при которых этот рост устойчив, то есть малые приращения нагрузок или малые изменения размеров трещин не приводят к ее интенсивному росту. В действительности физический процесс разрушения состоит из двух стадий. Первая стадия - накопление рассеянных повреждений - может составлять значительную часть общего ресурса (но различным данным от 50 до 90 %). Если в детали или элементе не было начальных технологических трещин, то зарождение первой макроскопической трещины есть результат накопления рассеянных повреждений. Процесс накопления повреждений продолжается и после того, как начался рост трещины, причем эти процессы взаимодействуют между собой.

газообразного 1,25, жидкого 'кип —196 °С. Осн. компонент объёму). Получают А. сжижением воздуха с последующим его разделением. Применяют для синтеза аммиака, а также как инертную среду в различных процессах и устройствах; жидкий А. служит хладоагентом в холодильных установках. А. не поддерживает дыхания и горения (отсюда название); входит в состав белков и нуклеиновых кислот — важнейших веществ живых клеток; один из гл. элементов питания растений (см. Азотные удобрения).

ВОЗДУХ — смесь газов, из к-рых состоит атмосфера. Объёмный состав В.: азот 78,08, кислород 20,95, инертные газы 0,94, углекислый газ 0,03, водяной пар, случайные примеси (пыль, микроорганизмы, аммиак, сернистый газ и др.). Плотн. В. 1,293 кг/м3. Жидкий В.— голубоватая жидкость с плотн. 960 кг/м3 (при —192 °С и норм, давлении). Благодаря кислороду, содержащемуся в В., он используется как хим. агент в различных процессах (горение топлива, выплавка металлов из руд, пром. получение мн. хим. соединений); ценность В. как хим. агента повышают, увеличивая содержание в нём кислорода. В.— важнейшее пром. сырьё для получения кислорода, азота, инертных газов.

ТЕПЛОВОЙ РЕЛЕЙНЫЙ ЭЛЕМЕНТ — релей* ный элемент, принцип действия к-рого осн. на различных процессах (электрич. и неэлектрич.), связанных с изменением темп-ры, теплового потока и т. п. В механич. Т. р. э. используют линейное или объёмное расширение материалов и веществ, переход веществ из одного состояния в другое и пр.

Рассматриваемое взаимодействие потока газа с окружающей средой может совершаться при различных процессах, таких как, например:

Потери DI и D2 целиком связаны с ректификационной колонной. Чтобы определить роль остальных потерь (Z)4 — в машинах и аппаратах криогенного процесса, Dz — при теплообмене, D5 — вследствие теп-лопритоков через изоляцию и др.) в различных процессах ректификации, необходимо рассмотреть соответствующие технические процессы.

Известно, что если интеграл по замкнутому контуру равен нулю, то подынтегральная величина является полным дифференциалом, что и определяет неизменность ее численного значения независимо от пути, по которому подынтегральная величина приходит к первоначальному значению. Между тем величины q и / являются функциями не состояния, а процессами характер последнего всецело определяет их численные значения. Из рис. 2-2 можно убедиться в том, что в различных процессах изменения состояния рабочего тела затрачивается различная работа, определяемая величиной площади, расположенной под кривой соответствующего процесса; соответственно рабочему телу сообщается или отводится от него различное количество тепла. В связи с этим величины q и / (или dq и dl) представляют собой количества тепла или работы, затраченные или полученные соответственно в конечном или элементарном процессе изменения состояния рабочего тела. Сообразно рассмотренным выше свойствам величины q и / не являются параметрами состояния рабочего тела и не имеют полных дифференциалов. По отношению к ним не применимо уравнение вида(2-11).

Т, s-диаграмма водяного пара. Для исследования различных процессов с водяным паром кроме таблиц используется Т, s-диаграмма (рис. 4.7). Она строится путем переноса числовых данных таблиц водяного пара в Т, s-координаты.

Обратите внимание на различие между коэффициентами теплопроводности К, теплоотдачи а и теплопередачи k. Эти коэффициенты характеризуют интенсивность различных процессов, по-разному рассчитываются и путать их недопустимо. Коэффициент теплопередачи есть чисто расчетная величина, которая определяется коэффициентами теплоотдачи с обеих сторон стенки и ее термическим сопротивлением. Важно подчеркнуть, что коэффициент теплопередачи никогда не может быть больше ai, «2 и Х/б. Сильнее всего он зависит от наименьшего из этих значений, оставаясь всегда меньше его. В предельном случае, когда, например,

Необходимость определения изменения энергии Гиббса для различных процессов и отображения ее в справочной литературе привели к введению очень удобной термодинамической функции, а именно «стандартного изменения энергии» Гиббса.

М. Фейгенбаум отметил общую черту различных процессов: по мере изменения внешнего параметра поведение системы меняется от простого к хаотическому, при этом поведение системы упорядочение) и периодично. Упорядоченность заключается в том, что в каждый период времени Т поведение системы самовоспроизводится. Вне этого диапазона процесс перестает воспроизводится через Т (например, Т секунд). Удвоение периода отвечает 2-Т, следующий этап удвоения периода - 4-Х. Процесс удвоения продолжается до тех пор, пока поведение системы перестает быть периодическим. Важным в решении Фейгенбаума явилось установление ранее неизвестной закономерности перехода системы от простого, периодического, к сложному, непериодическому, движению, связанной с тем, что в пределе хаотического непериодического движения имеется универсальное решение, общее для всех систем, испыты-

М. Фейгенбаум [25J установил общую закономерность различных процессов: по мере изменения внешнего параметра поведение системы меняется от простого к хаотическому. Однако, имеется определенный диапазон значений внешнего параметра, в котором поведение системы упорядочено и периодично. Упорядоченность заключается в том, что в каждый период времени Т поведение системы самовоспроизводится. Вне этого диапазона процесс перестает воспроизводиться, т.е. удвоение периода (Т, 2-Т, 4-Т...) продолжается до тех пор, пока число удвоений Т не достигнет предельного значения. Это условие выражено соотношением

Семь периодов человека различны по физическому времени: первый этап длится 1 год, а последний - 34 года; но по биологическому времени они одинаковы [5]. Биологическое время отражает скорость различных процессов, протекающих в организме. Течение собственного времени у быстро и медленно живущих существ также различается. В процессе старения человека происходит замедление темпа его собственного биологического времени. Поэтому и возникает ощущение, что с годами время бежит скорее.

Закон взаимосвязи массы и энергии. Из формулы (7.7) следует, что приращение кинетической энергии частицы сопровождается пропорциональным приращением ее релятивистской массы. Вместе с тем известно, что при протекании различных процессов в природе одни виды энергии могут преобразовываться в другие. Например, кинетическая энергия сталкивающихся частиц может преобразоваться во внутреннюю энергию образовавшейся частицы. Поэтому естественно ожидать, что масса тела будет возрастать не только при сообщении ему кинетической энергии, но и вообще при любом увеличении общего запаса энергии тела независимо от того, за счет какого конкретного вида энергии это увеличение происходит.

Инвариантность величины Е2 — р2с2 дает нам незаменимый инструмент при изучении различных процессов распада и столкновения релятивистских частиц, с помощью которого чрезвычайно упрощается как анализ самих процессов, так и соответствующие расчеты.

107 Диаграмма различных процессов столкновения

М. Фейгенбаум отметил общую черту различных процессов: по мере изменения внешнего параметра поведение системы меняется от простого к хаотическому, при этом поведение системы упорядоченно и периодично. Упорядоченность заключается в том, что в каждый период времени Т поведение системы самовоспроизводится. Вне этого диапазона процесс перестает воспроизводится через Т (например, Т секунд). Удвоение периода отвечает 2-Т, следующий этап удвоения периода - 4-Т. Процесс удвоения продолжается до тех пор, пока поведение системы перестает быть периодическим. Важным в решении Фейгенбаума явилось установление ранее неизвестной закономерности перехода системы от простого, периодического, к сложному, непериодическому, движению, связанной с тем, что в пределе хаотического непериодического движения имеется универсальное решение, общее для всех систем, испытывающих удвоение периода.

М. Фейгенбаум [25] установил общую закономерность различных процессов: по мере изменения внешнего параметра поведение системы меняется от простого к хаотическому. Однако имеется определенный диапазон значений внешнего параметра, в котором поведение системы упорядочено и периодично. Упорядоченность заключается в том, что в каждый период времени Т поведение системы самовоспроизводится. Вне этого диапазона процесс перестает воспроизводиться, т.е. удвоение периода (Т, 2-Т, 4-Т...) продолжается до тех пор, пока число удвоений Т не достигнет предельного значения. Это условие выражено соотношением




Рекомендуем ознакомиться:
Радиальный шариковый
Равномерно распределенном
Равномерно вращается
Равномерно ускоренного
Равноопасных напряженных
Равнопрочной конструкции
Равносильно увеличению
Равновесия элементов
Равновесия фиктивного
Равновесия необходимо
Равновесия относительно
Радиальные шариковые
Равновесия соответствует
Равновесия вследствие
Равновесие достигается
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки