Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Распространения возмущения



Рассмотренная картина представляет собой частный случай весьма общего явления: возмущения, возникшие в какой-либо области сплошной среды, обычно распространяются в этой среде со скоростью, в простейших случаях зависящей только от свойств среды (а в более сложных — и от характера возмущения), и переносят с собой энергию, которой обладало возмущение в начальный момент. В упругом стержне в результате распространения возмущения деформаций и скоростей, как мы видим, происходит перенос энергии упругой деформации и кинетической энергии. В других случаях, как, например, в случае жидкости, находящейся в поле тяжести, возмущение ее поверхности, вызванное брошенным камнем, распространяется в виде кольцевых волн, несущих с собой кинетическую и потенциальную энергию подымающихся и опускающихся колец поверхностного слоя жидкости. Эта общеизвестная картина волн на поверхности жидкости дала название всем явлениям распространения возмущений, несущих с собой энергию в сплошной среде. Волнами называются всевозможные возмущения различной природы и масштабов, начиная от рассмотренных выше кратковременных импульсов деформации в упругом стержне и вплоть до гигантских волн цунами, возникающих на поверхности океана в результате подводных землетрясений.

§ 1. Физическая картина распространения возмущений, способы их

В первой главе дано физическое описание процесса распространения возмущений в виде волн напряжений. Указаны способы возбуждения возмущений и методы измерения кинематических и динамических параметров волн напряжений. Сформулирована задача о распространении волн напряжений и указан метод решения ее для областей возмущений нагрузки, разгрузки и отраженной волны. Рассмотрены особенности взаимодействия волн напряжений при их распространении.

В настоящей главе разъясняются физическая природа возникновения и распространения возмущений, рассматриваются разнообразные методы измерения кинематических и динамических параметров. Приводятся динамические уравнения и определяющие соотношения, даются необходимые механические пояснения, важные для понимания сущности рассматриваемой проблемы. Приведена физико-математическая постановка динамической задачи и изложен общий эффективный метод ее решения. Достаточно детально обсуждены условия на фронте волны возмущений, выяснены области возмущений, инициированные волнами нагрузки и разгрузки, а также проанализировано отражение и взаимодействие волн напряжений ^при их распространении.

§ 1. Физическая картина распространения возмущений, способы их возбуждения

и другим явлениям, характерным для динамического и импульсивного нагружений. При интерференции волн напряжений их интенсивности складываются и могут достигать значений, превосходящих предел прочности материала. В этом случае наступает разрушение. После трех-четырехкратного прохождения и отражения волн напряжений в теле процесс распространения возмущений становится установившимся, напряжения и деформации усредняются,тело находится в колебательном движении.

Рассмотренная физическая картина волнового процесса распространения возмущений позволяет провести исследование напряженно-

Отсюда следует выражение скорости распространения возмущений объемного деформирования

Отсюда следует, что скорость распространения возмущений деформации формоизменения

— скорость распространения возмущений сдвига. Формула (1.4.10') показывает, что волна нагрузки расширения образуется в результате интерференции волны возмущений объемной деформации и волны возмущений сдвиговой деформации.

где az0 — IT- (A- + 4(г)— скорость распространения возмущений в вязкой жидкости.

Рассмотренная картина представляет собой частный случай весьма общего явления: возмущения, возникшие в какой-либо области сплошной среды, обычно распространяются в этой среде со скоростью, в простейших случаях зависящей только от свойств среды (а в более сложных — и от характера возмущения), и переносят с собой энергию, которой обладало возмущение в начальный момент. В упругом стержне в результате распространения возмущения деформаций и скоростей, как мы видим, происходит перенос энергии упругой деформации и кинетической энергии. В других случаях, как, например, в случае жидкости, находящейся в поле тяжести, возмущение ее поверхности, вызванное брошенным камнем, распространяется в виде кольцевых волн, несущих с собой кинетическую и потенциальную энергию подымающихся и опускающихся колец поверхностного слоя жидкости. Эта общеизвестная картина волн на поверхности жидкости дала название всем явлениям распространения возмущений, несущих с собой энергию в сплошной среде. Волнами называются всевозможные возмущения различной природы и масштабов, начиная от рассмотренных выше кратковременных импульсов деформации в упругом стержне и вплоть до гигантских волн цунами, возникающих на поверхности океана в результате подводных землетрясений.

Соотношение v (Ф) (см. рис. 3) определяет поверхность скоростей. Однако, если волны исходят из некоторой точки пластины, то первое возмущение, которое приходит к наблюдателю в точке (/•„, 00) может не соответствовать нормали Ф = 9„. Если время распространения возмущения t считать равным единице, то первая плоская волна, соответствующая направлению п, которая приходит в точку г, должна удовлетворять равенству

личную степень завершенности процессов тепло- и массообме-на между фазами. Этим диапазоном скоростей, очевидно, исчерпываются возможности гомогенной модели без скольжения. Дальнейшее увеличение скорости распространения возмущения связано с появлением скольжения между фазами (неполнота обмена количеством движения) ; когда скольжение становится максимальным, скорость звука достигает своего максимального значения, равного скорости звука в чистом паре. В -случае однородной двухфазной Смеси удельный критический расход и критическая скорость истечения могут быть рассчитаны по формулам:

В то же время измерения скорости распространения возмущений в однородном двухфазном потоке [40] свидетельствуют о том, что за время распространения возмущения фазовый переход произойти не успевает.

На рисунке 1.17 представлены фотограммы и стилизованная картина распространения возмущения в образцах КС1. На рисунках 1.21, 1.22 представлены фотограммы скоростной фоторегистрации распространения возмущений от канала разряда при пробое органического стекла (ПММА) в режиме щелевой развертки и режиме лупы времени теневым способом и в поляризованном свете.

Рассмотрение вопроса о направленном движении трещин необходимо основывать на вариационном принципе, но прежде всего необходимо выявить механизм энергоснабжения трещин, так как в нашем случае скорость роста трещин меньше скорости распространения возмущения. Вероятно, источниками энергоснабжения, обеспечивающими рост магистральных трещин при импульсной нагрузке, являются энергия деформации, накопленная в объеме при движении в нем волн сжатия, а также различного типа отраженные волны и волны релаксации напряжений, связанных с наличием неоднородности в образце. Концентрация напряжений вблизи неоднородностеи, а затем и образование системы микротрещин являются основными источниками волн релаксации, т.е. наибольший приток энергии для своего развития трещина получает от близлежащих областей локальных возмущений.

При этом для показателя изоэнтропы k предложено выражение, которое позволяет не только определять скорость звука на реальной нижней границе дисперсии, но и по известным параметрам заторможенного потока двухфазной смеси определять критические параметры смеси, критический расход и критическую скорость истечения двухфазной смеси. Выражение (2.13) обладает тем преимуществом перед другими известными выражениями для определения скорости звука в двухфазной смеси, что одинаково хорошо описывает скорость распространения возмущения в среде с любой степенью сжимаемости на верхней и нижней границах дисперсии, а также при неполном обмене количеством движения между фазами. Различными будут лишь выражения для показателя изоэнтропы. Так, например, для идеального газа k= cp/cv; на верхней границе дисперсии звука показатель изоэнтропы смеси равен значению показателя изоэнтропы сжимаемой фазы, а для термодинамически равновесной скорости звука на нижней границе дисперсии k = (Т/р) (у/Ср) * x(dp/dT)2. Предложенное в [55] выражение для показателя изоэнтропы однородной двухфазной смеси получено в предположении, что фазы являются взаимопроникающими и ведут себя в смеси подобно смеси разнородных газов (VT = Уж = ^См)-В [58] предложено аналогичное выражение для показателя изоэнтропы двухфазной смеси пузырьковой структуры, в которой VCM = Vr + Уж.

где УО — частота колебаний источника; <р — угол между вектором V и направлением распространения возмущения; 9 — угол между вектором и и направлением распространения возмущения.

При выборе т и с можно руководствоваться и соображениями динамического подобия, когда массы и жесткости выбирают так, чтобы первые п собственных частот модели и стержня были одинаковы. При п —* оо оба подхода дают в пределе точные результаты. Однако при малых п более точные результаты достигаются при динамически подобных моделях. Эти модели позволяют определить распределение сил в деформируемом теле, определить длительность удара, но не позволяют определить скорость распространения возмущения. В качестве недостатка следует отметить и то, что после удара система дискретных масс находится в деформированном состоянии, а модель системы с распределенными параметрами в момент отрыва недеформирована.

где VQ — частота колебаний источника; ф — угол между вектором v и направлением распространения возмущения; в — угол между вектором и и направлением распространения возмущения.




Рекомендуем ознакомиться:
Расположения инструмента
Расположения максимума
Рациональной отображающей
Расположения относительно
Расположения поверхности
Расположения различают
Расположения технологического
Расположением армирующих
Расположением относительно
Расположение аппаратуры
Расположение источника
Расположение определяется
Расположение плоскости
Рациональное построение
Расположении двигателя
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки