Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Распространения ультразвукового



где t - время распространения ультразвукового импульса в изделии от поверхности ввода УЗК до донной поверхности и обратно; С- скорость распространения ультразвуковых волн в материале, из которого выполнено измеряемое изделие.

Положение точки выхода луча определяют по стандартному образцу СО-3 (рис. 4.12), изготовленному из стали той же марки, что и образец СО-2. По образцу СО-3 можно также определить схему преобразователя и отстроить от времени 2tn (в мкс) распространения ультразвуковых колебаний в призме преобразователя: 2tn = ti - 33,7, где ti - временный сдвиг между зондирующим импульсом и эхо-сигналом от вогнутой цилиндрической поверхности в образце СО-3 при установке преобразователя в положение, соответствующее максимальной амплитуде эхо-сигнала.

При исследовании влияния малоцикловой усталости на скорость распространения ультразвуковых волн рабочая зона образца разбивается на ячейки, в каждой из которых замеряется скорость прохождения ультразвуковой волны. Было установлено, что скорость распространения продольных ультразвуковых волн в сварном шве ниже, чем в основном металле (рис. 5.14).

Рис. 5.14. Зависимость скорости распространения ультразвуковых продольных волн от уровня накопления усталостных повреждений N/NP

Изменение скорости распространения ультразвуковых волн по мере накопления уровня усталостных повреждений (N/Np) в зоне термического влияния происходит быстрее, чем в зоне сварного шва и основного металла, что видно из графика (рис. 5.15.).

В отличие от методов просвечивания, ультразвуковые методы позволяют успешно выявлять именно трещиноподобные дефекты. Спецификой ультразвукового метода контроля является то, что он не дает конкретной информации о характере дефекта, так как на экране дефектоскопа появляется импульс, величина которого пропорциональна отражающей способности обнаруженного дефекта. Последняя зависит от многих факторов: размеров дефекта, его геометрии и ориентации по отношению к направлению распространения ультразвуковых колебаний. В связи с тем, что эти параметры при контроле остаются неизвестными, обнаруженные дефекты обычно характеризуются эквивалентной площадью, которая устанавливается в зависимости от интенсивности полученного сигнала. Достоинствами ультразвукового метода являются его меньшая по сравнению с методами просвечивания трудоемкость, а также возможность достаточно точного определения координат обнаруженного дефекта. Как показала практика применения ультразвукового метода, он не позволяет достаточно надежно обнаружить дефекты, лежащие вблизи поверхности изделия в связи с экранированием сигнала от дефекта сигналом ог поверхности. Это обстоятельство также необходимо учитывать при практическом использовании данного метода контроля. Ультразвуковые методы используют как для контроля дефектов металла листов и поковок на стадии их изготовления, так и для контроля сварных соединений, для диагностики трубопроводного транспорта. На данном принципе созданы внутритрубные инспекционные снаряды (ВИС) — Ультраскан-СД, которые, двигаясь внутри трубы, считывают информацию о техническом состоянии трубопроводов. При этом фиксируется толщина стенки, коррозионные каверны, расслоения металла, дефекты стресс-коррозионного происхождения.

Память и АЦП в интроскопах требуются скоростные. Объясняется это темпом поступления информации, который определяется скоростью распространения ультразвуковых колебаний в контролируемом изделии и требуемым осевым разрешением. Так, если необходима разрешающая способность по глубине 1 мм, при скорости звука 6000 м/с, то в эхо-импульсном интроскопе цикл АЦП — память должен быть не более 1/3 мкс, что реально с применением таких микросхем, как КП07ПА1 и К565РУ5. Совокупность блоков: АЦП, память, ЦАП и БУ называют иногда цифровым преобразователем ультразвуковых

ствлять тензометрию изделий при времени распространения ультразвуковых волн в них более 10 мкс.

Установка представляет собой ряд дефектоскопов, выходные сигналы которых непрерывно в определенном масштабе и синхронно со скоростью движения вагонов фиксируются на кинопленке и бумаге регистрирующих устройств. Регистрация на кинопленку производится в координатах время распространения ультразвуковых колебаний — длина пути. Пленка протягивается синхронным приводом, управляемым сельсин-преобразователем, жестко связанным с нетормозным колесом индукторной тележки вагона. Индикаторный блок предназначен для визуального контроля чувствительности и качества акустического контакта, а также для синхронизации работы схемы установки.

В отличие от методов просвечивания, ультразвуковые методы позволяют успешно выявлять именно трещиноподобные дефекты. Спецификой ультразвукового метода контроля является то, что он не дает конкретной информации о характере дефекта, так как на экране дефектоскопа появляется импульс, величина которого пропорциональна отражающей способности обнаруженного дефекта. Последняя зависит от многих факторов: размеров дефекта, его геометрии и ориентации по отношению к направлению распространения ультразвуковых колебаний. В связи с тем, что эти параметры при контроле остаются неизвестными, обнаруженные дефекты обычно характеризуются эквивалентной площадью, которая устанавливается в зависимости от интенсивности полученного сигнала. Достоинствами ультразвукового метода являются его меньшая по сравнению с методами просвечивания трудоемкость, а также возможность достаточно точного определения координат обнаруженного дефекта. Как показала практика применения ультразвукового метода, он не позволяет достаточно надежно обнаружить дефекты, лежащие вблизи поверхности изделия в связи с экранированием сигнала от дефекта сигналом от поверхности. Это обстоятельство также необходимо учитывать при практическом использовании данного метода контроля. Ультразвуковые методы используют как для контроля дефектов металла листов и поковок на стадии их изготовления, так и для контроля сварных соединений, для диагностики трубопроводного транспорта. На данном принципе созданы внутритрубные инспекционные снаряды (ВИС) — Ультраскан-СД, которые, двигаясь внутри трубы, считывают информацию о техническом состоянии трубопроводов. При этом фиксируется толщина стенки, коррозионные каверны, расслоения металла, дефекты стресс-коррозионного происхождения.

Если на пути распространения ультразвуковых колебаний в исследуемом металле находится какой-либо дефект (трещины, несплошность металла, раковины и т. п.), который может рассматриваться как нарушение непрерывности акустических свойств среды,

где t - время распространения ультразвукового импульса в изделии от поверхности ввода УЗК до донной поверхности и обратно; С- скорость распространения ультразвуковых волн в материале, из которого выполнено измеряемое изделие.

Импульсные толщиномеры. Импульсные толщиномеры, как правило, работают по принципу измерения времени t распространения ультразвукового импульса в изделии от поверхности ввода УЗК до донной поверхности и обратно. При этом измеряемая толщина а — V2c/. Действие импульсных толщиномеров может быть основано на измерении частоты повторения многократно отраженных в изделии импульсов УЗК, частоты или периода свободных колебаний или изменении амплитуды при сквозном прозвучивании. Эхо-импульсные толщиномеры делят на приборы для контроля изделий с хорошо обработанными (Rz ^ 40 мкм) параллельными поверхностями (группа А) и грубо обработанными, корродированными

Рис. 3.4. Схема распространения ультразвукового пучка в наклонном преобразователе

ЦНИИТМАШ. В зависимости от траектории распространения ультразвукового пучка относительно поверхности сканирования РС-ПЭП типа «Дуэт» называют хордовыми и угловыми (рис. 3.17, а, б). Применение хордовых РС-ПЭП возможно только для контроля изделий с большой кривизной поверхности (п режде всего труб с диаметром D <; 100 мм). Принципиальная особенность этих ПЭП [4 ] — прозвучивание дефекта горизонтально поляризованной вол-

ной, распространяющейся параллельно стенке трубы. Такие условия распространения ультразвукового пучка выполняются, если расстояние по хорде между точками выхода излучателя И и приемника П [4] 2/ = 1/^21) Я — Я2 (Я — толщина стенки трубы), а призмы наклонены под определенными углами. С целью уменьшения интенсивности поверхностной волны и выравнивания чувствительности по толщине изделия применяют фокусирующие линзы или многослойные призмы с неравномерной скоростью по сечению, перпендикулярному падающему лучу. Благодаря этому при контроле не требуется поперечного сканирования ПЭП, причем уровень полезного сигнала таких ПЭП более высокий по сравнению с известными, что обеспечивает выявление небольших объемных и плоскостных дефектов. Например, при прозвучивании шва отраженным от плоскодонного отражателя диаметром 2Ь = = 0,8 мм лучом на глубине 2 мм уровень полезного сигнала равен

6. Проверку работоспособности и настройку прибора УКБ-1 производить в соответствии с инструкцией по эксплуатации или по эталонному, в котором заранее известно точное значение времени распространения ультразвукового сигнала.

5. Определить по прибору и записать в журнал время распространения ультразвукового сигнала.

Рис. 4. Схема распространения ультразвукового пучка

распространения ультразвукового импульса

По мере распространения ультразвукового контроля появились многочисленные официальные и неофициальные предписания по контролю отдельных типов изделий (см. главу 34). При этом все же приходится предъявлять некоторые требования к приборам, потому что выяснилось, что нет единообразно определяемых показателей свойств и соответствующих способов их измерения и контроля. Эти вопросы в последнее время рассматриваются в различных странах разными организациями. Здесь следует сослаться на проект Западногерманского общества по неразрушающим методам контроля [1711, 1083], DIN 54124, см. также [1709].

преобразователя. Независимость результатов от места падения индентора на образец обеспечивается параллельной установкой образца и отражателя. Время распространения ультразвукового импульса от отражателя по стойке, на которой он закреплен, к звукопроводу легко рассчитывается как т' = 1(Ё I р)~1У2,




Рекомендуем ознакомиться:
Расположения контактной
Расположения оборудования
Расположения отдельных
Расположения подшипников
Расположения рассматриваемой
Рациональной структуры
Расположением электродов
Расположением направляющих
Расположение элементов
Расположение дислокаций
Расположение оборудования
Расположение отверстия
Расположение преобразователей
Расположении элементов
Расположении поверхностей
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки