Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Растрового электронного



Ни основании результатов прямых структурных исследований о использованием методов рентгено-структурного анализа, электронной Микродифракции, автоионной, растровой электронной и оптической микроскопии показано, что структура исследованных сплавов представляет собой трехмерные конформиции исходной цепочки тетраэдров состава ЦМ,(М (с атомом металлоида в центре).

С использованием методов растровой электронной микроскопии, метода скользящего пучка рентгеновских лучей и измерения микротвердости исследованы процессы самоорганизации дислокационной в субзеренной структуры в приповерхностных слоях и внутренних объемах технически чистого рекристоллизованного Мо при статическом растяжении и влияние магнетронного покрытия Мо-45, 8Re-0,017C на особенности протекания этих процессов вблизи поверхности. Исследования проводили на образцах, растянутых до деформаций, соответствующих пределу пропорциональности, нижнему пределу текучести и пределу прочности.

Изучением строения изломов и интерпретацией содержащейся в них информации занимается фрактография. Ценность фрактографии как источника информации о механизмах разрушения усиливается тем, что она позволяет однозначно определить источник разрушения. Разработка новых методов изучения поверхности твердых тел каждый раз способствовала развитию фрактографии. Бурный рост фрактогра-фических исследовании связан с развитием растровой электронной микроскопии, которая сочетает уникальные возможности одновременного изучения морфологических особенностей рельефа поверхности трещины с разрешением порядка 1,5—2,0 нм, а также химического и кристаллографического микроанализа с разрешением порядка 1 мкм.

Устойчивое формирование усталостных бороздок по всему фронту трещины происходит после достижения шага около 45 нм (4,5 -10~8 м или 0,045 мкм), что характерно для алюминиевых сплавов. В сталях могут быть обнаружены бороздки с шагом около 30 нм, в титановых сплавах устойчивое формирование бороздок имеет место после достижения их шага около 25 нм. Все указанные величины обнаружены с помощью методов высокоразрешающей просвечивающей и растровой электронной микроскопии. Они соответствуют нижней границе размеров мезоскопического масштабного уровня применительно к размерам субструктурных элементов и характеризуют определенный процесс нарушения сплошности материала в цикле приложения нагрузки и с этой точки зрения характеризуются определенным профилем или геометрией усталостной бороздки. Поскольку формирование усталостных бороздок происходит под действием двух полуциклов нагружения-рас-тяжения (восходящая ветвь нагрузки) и снижения нагрузки, то форма профиля усталостной бороздки в значительной степени зависит от того, какой процесс доминирует в каждом из полуциклов [123, 132-134].

4. ШанявскийА. А. // В сб.: "Применение в металловедении просвечивающей и растровой электронной микроскопии" (под ред. О. Н. Романива).— М.: МДНТП, 1976.- С. 89-93.

Исследование методами световой и растровой электронной микроскопии износа пары никель — никелевый сплав при трении без смазки позволило выяснить, что в начальный период износ является абразивным, обусловленным шероховатостью поверхностей. При этом происходит -схватывание со сдвиговым разрушением и переносом сплава на поверхность никеля. При дальнейшем испытании непрерывное схваты^ние у птде-^ниеврпут к расслоению метал-

SO. Саррак В. И., Филиппов Г. А. Применение растровой электронной микроскопии для изучения задержанного разрушения закаленной стали. Применение в металловедении просвечивающей и растровой электронной микроскопии. Материалы семинара. М., Публикация Дома научно-технической пропаганды им. Ф. Э. Дзержинского (МДНТП), 1976, с. 78—83.

В работе изложены результаты экспериментальных исследований, связанных с поверхностной обработкой углеродных волокон, нанесением медных покрытий. С помощью растровой электронной микроскопии изучено влияние предварительной обработки углеродных волокон на адгезию покрытия к поверхности волокон. Было обнаружено, что предварительная обработка в окислительной среде способствует улучшению адгезии. Показано, что качество покрытия зависит от режима осаждения и состава раствора. Рис. 3, библиогр. 5.

Проблема создания и использования композиционных материалов, требующая детальных исследований деформационного и диффузионного взаимодействия составляющих, приводит к необходимости сочетания известных принципов тепловой микроскопии, например, растровой электронной микроскопии; это может быть реализовано в виде приставок к сканирующему электронному микроскопу, позволяющих осуществлять одновременное тепловое воздействие (нагрев или охлаждение) и механическое нагружение образца.

Металлографическое изучение деформации биметаллов целесообразно проводить с использованием комплексной методики экспериментирования, основанной на применении автоматических телевизионных анализаторов изображения. Это позволяет осуществлять количественную оценку накопления пластической деформации по числу полос скольжения в анализируемых участках материала, измерять длину трещин и площадь пластической деформации в их вершинах. Наряду с анализом деформационной структуры методика предусматривает проведение микрорентгеноспектраль-ного анализа и фрактографическое изучение изломов с помощью растровой электронной микроскопии. Ниже приведены примеры исследования процесса накопления пластической деформации в переходных зонах образцов биметалла Ст. 3+Х18Н10Т, подвергнутых циклическому нагружению на установке ИМАШ-10-68. Подсчет числа полос скольжения производится с помощью телевизионного анализатора изображения на площади, заключенной в рамку сканирования (рис. 1). Образец, размещенный на предметном столике автоматического количественного микроскопа «РМС», перемещался по заданной программе вдоль выбранной базы измерения, ширина которой была равна высоте, а длина соответствовала ширине рамки сканирования, умноженной на число перемещений столика.

Создание перспективных средств тепловой микроскопии должно осуществляться на основе анализа тенденций развития отечественной и зарубежной аппаратуры. При этом необходим учет достижений в области создания и развития машин для испытания механических свойств, аппаратуры для рентгеноструктурного анализа,- просвечивающей и растровой электронной микроскопии и т. д.

При систематическом исследовании с помощью растрового электронного микроскопа изломов материалов на основе переходных ОЦК-металлов, подвергнутых испытанию на одноосное растяжение в широком интервале температур испытания и претерпевших хрупко-пластичный переход [95], установлено, что все кажущееся многообразие видов поверхностей разрушения может быть описано как результат действия весьма ограниченного числа механизмов разрушения, модифицированных влиянием структуры материала и температурно-скорост-ных условий нагружения. Следует выделить следующие механизмы разрушения: скол, слияние пор, хрупкое межзеренное (межъячеистое) разрушение.

Медленное деформирование материала может приводить к рост}' трещины не только по плоскостям скольжения, но также и по границам фрагментов в условиях интенсивного наклепа материала и к потере когезивной прочности в субграницах. Такой вид разрушения сосуда под давлением был зарегистрирован в условиях эксплуатации. Трещина распространялась в сплаве 17Х4НЛ по границе раздела двухфазовой структуры между прослойками феррита (ферритная полосчатость) и мартенситной матрицей, В условиях двухосного растяжения под давлением и длительной выдержки под нагрузкой происходило "вязкое отслаивание" феррита по приграничным зонам. Трехточечный изгиб образцов в виде пластин, вырезанных из гидроагрегата вдоль образующей его цилиндрической части, показал, что при скорости деформации 0,1 мм/мин образцы имеют высокую пластичность с остаточной деформацией около 8 % в зоне разрушения. Рельеф излома имел полное подобие рельефу эксплуатационного излома. Это означало, что в условиях эксплуатации вязкость разрушения была реализована полностью, хотя на мезоскопи-ческом масштабном уровне (0,1-10 мкм) разрушение было квазихрупким. Пластическая деформация материала была реализована за счет деформации зерен феррита с формированием неглубоких ямок в момент отслаивания феррита по границам мартенситных игл, что привело к столь значительному утонению стенок ямок, что их можно было выявить только при увеличении около 10,000 крат при разрешении растрового электронного микроскопа около 10 нм.

Детальное изучение состава частиц было проведено на Оже-спектрометре LAS-2000 (фирма "Рибер", Франция) с коаксиальной электронной пушкой и анализатором электронов типа "цилиндрическое зеркало" с разрешением доли энергии спектра AWE / WE < 0,3 % при остаточном давлении (1,3-2,6) • 1(Г8 МПа. Ток пучка электронов составлял около 5-Ю"7 А, энергия первичного пучка 3 кэВ, диаметр — несколько микрометров. Режим работы во вторичных электронах позволял в режиме работы типа растрового электронного микроскопа выбрать для исследования участок поверхности размером в несколько квадратных микрометров.

Рис. 3.24. Последовательность (я)—(г) состояний материала в вершине усталостной трещины при монотонном растяжении пластины в колонне растрового электронного микроскопа, и схема (д), (е) образования трещины по одной из полос скольжения в результате вращения объема металла перед вершиной трещины

профиля, которую удобно для описания представлять как гребенчатую структуру. Применительно к анализу и измерениям усталостных бороздок такое представление соответствует реально наблюдаемой геометрии их профиля, как было показано в параграфе 3.4. Для точного определения периодов этой структуры удобнее всего использовать спектральный метод анализа изображения с помощью одномерных и двумерных преобразований Фурье [90]. Рассмотрим на простом примере возможности одномерного преобразования Фурье. При считывании с растрового электронного микроскопа (РЭМ) в ЭВМ строки изображения перпендикулярно гребенчатой структуре излома фиксируется профиль сигнала, имеющего соответствующую периодичность. Предположим, шаг усталостных бороздок однороден в пределах рассматриваемой фасетки излома, его величина меняется пренебрежимо мало и сигнал от рассматриваемой периодической структуры близок к синусоидальному. В этом случае преобразование Фурье от строки изображения с таким сигналом будет умещаться в строку изображения. Если, например, в пределах рассматриваемой фасетки излома получены 20 полных периодов структуры излома, то в спектре Фурье будет присутствовать только двадцатая компонента (гармоника). Таким образом, по преобладающим гармоникам в спектре Фурье можно сделать вывод о преобладающем размере периодических структур на исследуемом участке. Если на изучаемой фасетке излома имеют место две периодические структуры в виде усталостных бороздок с двумя разными величинами, то в спектре Фурье с такой фасетки будут выявлены два пика. Причем важно подчеркнуть, что совершенно не важно, как расположены бороздки одного и того же шага в пределах фасетки излома и как они чередуются: сначала могут идти структуры одного размера, потом другого. Шаг бороздок или период регулярной структуры может распределяться в произвольных комбинациях. Таким образом, Фурье-анализ позволяет проводить интегральное метрологическое исследование периодических структур без измерения каждого отдельного шага усталостных бороздок. В такой ситуации в первую очередь исключается субъективное влияние измерителя на получение конечного размера параметра рельефа поверхности, которым в коли-

Микрорельеф излома в зоне усталостной трещины характеризуется площадками сглаженного рельефа, вытянутыми в направлении развития усталостной трещины. Усталостные бороздки в рассматриваемой зоне не были выявлены при разрешающей способности использованного растрового электронного микроскопа лучше 0,009 мкм.

под действием низкоамплитудных вибрационных нагрузок. В этом случае размер зоны пластической деформации у вершины трещины настолько мал, что при смене условий нагружения лопатки изменение шероховатости рельефа, а следовательно, формирование усталостной линии, может быть осуществлено с небольшой реализацией работы пластической деформации. Для такой ситуации усталостные микролинии отчетливо выявляются только при использовании растрового электронного микроскопа. По ориентировке мезолинии усталостного разрушения было видно, что развитие трещины происходило стабильно почти на все сечение лопатки с резким переходом к ее окончательному разрушению по сечению, доля которого составила менее 5 % от общей площади излома.

Изучение механики усталостных трещин началось после внедрения в практику исследований растрового электронного микроскопа, разрешающая способность которого позволяет четко разграничить стадии возникновения и развития трещин начиная с момента излома микроструктуры. На этом микроскопе удается наблюдать начало процесса концентрации рассеянных микротрещин и перерастания их в одну конечную трещину критического размера, которая под воздействием приложенных усилий после медленного роста переходит в катастрофическое состояние. Однако такой процесс не носит внезапного характера, он состоит из последовательного объединения соседних микротрещин, уменьшения числа микротрещин, размер которых увеличивается, и ускорения роста размеров одной из трещин. Такая трещина называется конечной, и именно она приводит к усталостному разрушению. Поэтому полное число циклов до разрушения составит

в) растровая электронная тепловая микроскопия, основанная на деформировании микрообразцов непосредственно в камере растрового электронного микроскопа при различных режимах теплового воздействия.

Методы прицельного измерения микротвердости в широком диапазоне температур основаны на использовании прямого наблюдения с помощью светового или растрового электронного микроскопов за поверхностью нагретого (или охлажденного) образца. Эти методы позволяют точно выбирать места индентации и непосредственно измерять величину отпечатка инден-тора в процессе опыта.

Разрешение в режиме растрового электронного микроскопа, нм ........... 20




Рекомендуем ознакомиться:
Распространение возмущений
Распространению усталостных
Радиационные поверхности
Распространенным средством
Рассчитываемых элементов
Рассчитывать прочность
Рассчитывают прочность
Рассчитать характеристики
Рассчитать коэффициенты
Рассчитать температуру
Рассеяния характеристик
Рассеяния результатов
Рассеяние излучения
Радиационных поверхностях
Рассеянное излучение
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки