Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Радиационно кондуктивного



Среди процессов сложного теплообмена различают радиацион-но-конвективный и радиационно-кондуктивный теплообмен.

деляется их суммой. Радиационно-кондуктивный теплообмен в плоском слое для других исходных условий рассмотрен в [Л. 5, 117, 163]; для цилиндрического слоя — в [Л. 116].

Число Ki характеризует радиационно-кондуктивный перенос; К и k — коэффициенты теплопроводности и ослабления среды.

Радиационно-кондуктивный теплообмен рассматривается применительно к плоскому слою ослабляющей среды. Решены две задачи. Первая — аналитическое рассмотрение радиационно-кондуктивного теплообмена в плоском слое среды без каких-либо ограничений в от-'ношении температур поверхностей слоя. При этом среда • и граничные поверхности предполагались серыми, а внутренние источники тепла в среде отсутствовали. Второе решение относится к симметричной задаче радиационно-кондуктивного теплообмена в плоском слое селективной и анизотропно рассеивающей среды с источниками тепла внутри слоя. Результаты решения первой задачи

Глава четырнадцатая Радиационно-кондуктивный теплообмен

Радиационно-кондуктивный теплообмен, являющийся одним ш видов сложного теплообмена, имеет место в различных областях науки и темники (астро- и геофизика, металлургическая и стекольная промышленность, электровакуумная технология, .производство новых материалов и пр.). К необходимости изучения процессов радиационно-кондуктивного теплообмена приводят также задачи переноса энергии в пограничных слоях потоков жидких и газообразных сред и проблемы исследования теплопроводности различных полупрозрачных материалов.

14-2. Радиационно-кондуктивный теплообмен в плоском слое серой поглощающей среды без источников тепла

14-3. Радиационно-кондуктивный теплообмен в плоском слое селективной и анизотропно рассеивающей среды с источниками тепла

Таким образом, на основании перечисленных и некоторых других, более частных работ становится очевидным, что радиационно-кондуктивный теплообмен в системах, содержащих объемные источники тапла, изучен явно недостаточно. В частности, не выяснено влияние селективности среды и граничных поверхностей, влияние анизотропии объемного и поверхностного рассеяния. В связи с этим автором было предпринято приближенное аналитическое решение задачи радиационно-коядуктивного теплообмена в плоском слоесре-

тнвный и конвективный переносы тепла. Частными случаями этого гаида теплообмена .являются: радиационный теплообмен в движущейся среде (при отсутствии кон-дуктивного переноса), радиационно-кондуктивный теплообмен в неподвижной среде (при отсутствии конвективного (переноса) и чисто 'конвективный теплообмен в движущейся среде, когда радиационный перенос отсутствует. Полная система уравнений, описывающих процессы радиационно-конвективного теплообмена, была рассмотрена и проанализирована IB гл. 12.

— обобщенный критерий радиационно-кондуктивного теплообмена; Iw = оГ3 8/Ям — радиационно-кондуктивный критерий Иванцова; Q^=T0]TW — 1 — температурный симплекс;

Задачи радиационно-конвективного теплообмена даже для простых случаев обычно более трудны, чем задача радиационно-кондуктивного теплообмена. Ниже приведено приближенное решение [Л. 205] одной распространенной задачи радиационно-конвективного теплообмена. Существенные упрощения позволяют довести решение до конца.

К настоящему времени интегральные уравнения радиационного теплообмена широко (Используются во многих областях науки и техники: при решении светотехнических задач распределения освещенности [Л. 97—99, 358—365], при исследованиях радиационного теплообмена в теплофизике и теплотехнике [Л. 60, 100, 101, 344, 354, 355, 366—368], в геофизике {Л. 46, 102]. Все большее применение находят интегральные уравнения и при исследованиях радиационно-конвективного [Л. 102—107, 34S] и радиационно-кондуктивного [Л. 79, 108, 369, 370, 372] теплообмена.

Далее выполнены теоретические исследования трех упомянутых видов сложного теплообмена: радиационного теплообмена в движущейся среде, радиационно-кондуктивного и радиационно-конвективного теплообмена. Процесс радиационного теплообмена в движущейся среде (пренебрегая ее теплопроводностью) исследован для цилиндрического и плоского каналов при продольном омывании поверхности нагрева, а также в плоском слое движущейся среды в условиях набегающего потока.

Радиационно-кондуктивный теплообмен рассматривается применительно к плоскому слою ослабляющей среды. Решены две задачи. Первая — аналитическое рассмотрение радиационно-кондуктивного теплообмена в плоском слое среды без каких-либо ограничений в от-'ношении температур поверхностей слоя. При этом среда • и граничные поверхности предполагались серыми, а внутренние источники тепла в среде отсутствовали. Второе решение относится к симметричной задаче радиационно-кондуктивного теплообмена в плоском слое селективной и анизотропно рассеивающей среды с источниками тепла внутри слоя. Результаты решения первой задачи

Как частные случаи из системы уравнений сложного теплообмена вытекают все отдельные уравнения, рассматриваемые в гидродинамике и теории теплообмена: уравнения движения и неразрывности среды, уравнения чисто кондуктивного, конвективного и радиационного теплообмена, уравнения радиационно-кондуктивного теплообмена в неподвижной среде и, наконец, уравнения радиационного теплообмена в движущейся, но нетепло-про-зодной среде.

Радиационно-кондуктивный теплообмен, являющийся одним ш видов сложного теплообмена, имеет место в различных областях науки и темники (астро- и геофизика, металлургическая и стекольная промышленность, электровакуумная технология, .производство новых материалов и пр.). К необходимости изучения процессов радиационно-кондуктивного теплообмена приводят также задачи переноса энергии в пограничных слоях потоков жидких и газообразных сред и проблемы исследования теплопроводности различных полупрозрачных материалов.

но рассчитать процесс радиационио-'кондуктивного теплообмена IB тех условиях, для которых справедливы полученные решения. Численные решения задачи дают наглядную .картину исследуемого процесса для (конкретных случаев, не требуя при этом введения многих ограничений, присущих приближенным аналитическим исследованиям. Как аналитические, так и численные решения, несомненно, являются известным (прогрессом в изучении процессов радиационно-тондуктивного теплообмена, несмотря на свой ограниченный и частный характер.

Задача рассматривается в следующей постановке. Между серыми плоскими поверхностями 1 и 2 с заданными температурами Twi и Tw2 и поглощательными способностями di и az находится серая поглощающая и теплопроводная среда с постоянными 'коэффициентами поглощения а' и теплопроводности К (рис. 14-1). Рассеяние в среде и внутренние источники тепла отсутствуют, а толщина слоя равна L. В принятых условиях требуется найти распределение температур в слое и величину суммарного радиационно-кондуктивного потока тепла через слой.

Наиболее детальное аналитическое исследование получила рассмотренная выше задача радиационно-кондуктивного теплообмена через слой серой, чисто поглощающей среды при задании температур серых граничных поверхностей слоя и при отсутствии источников тепла в самой среде. Задача радиационно-кондуктивного теплообмена слоя излучающей и теплопроводной среды с граничными поверхностями при наличии в объеме источников тепла рассматривалась в весьма ограниченном числе работ с принятием тех или иных допущений.

Впервые попытка учета внутренних источников тепла в процессах «радиационно-кондуктивного теплообмена была предпринята в [Л. 208], где рассматривалась задача переноса тепла излучением и теплопроводностью через слой серой, нерассеивающей среды с равномерным распределением источников по объему. Однако математическая ошибка, допущенная в работе, свела на нет полученные результаты.

Применительно к цилиндрической конфигурации объема задача радиационно-кондуктивного теплообмена с внутренними источниками тепла рассматривалась в [Л. 85]. Авторы предприняли численное решение специфической задачи переноса тепла в электрической 'дуге цилиндрической формы. В качестве среды был принят водород при давлении ilOO кгс/см2, перенос излучения в котором рассматривался в диффузионном приближении.




Рекомендуем ознакомиться:
Различают абсолютную
Различают химическую
Различают подшипники
Различают универсальные
Радиальных напряжений
Различные дополнительные
Различные химические
Различные измерительные
Различные комбинации
Различные конструкционные
Различные механические
Различные напряжения
Различные обозначения
Различные показатели
Различные промежутки
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки