Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Свинцовой оболочкой



трудностями. Намного более благоприятно ведут себя медь со свинцовым покрытием или горячеоцинкованная сталь чем в соответствии с рис. 2.10 при UCufCuSO=—\,2 В для цинка обеспечивается катодная защита. Для этого однако требуются гораздо меньшие защитные токи, чем для поляризации других материалов заземлителей.

Металлические покрытия из расплавленных металлов наносят обычно на стальные полуфабрикаты. Речь идет об оловянных, цинковых и алюминиевых покрытиях. Железо при соответствующих условиях реагирует с этими металлами и образует химические соединения, так называемые интерметаллические фазы, с помощью которых покрытия соединяются со сталями. Свинец не образует таких фаз с железом, однако с помощью так называемых твердых растворов с оловом и мышьяком можно получить промежуточный слой между сталью и свинцовым покрытием. Образование промежуточных фаз является необходимым условием, и толщина их должна быть минимальной.

X — при об. т. в 5—80%-ной кислоте в смеси с серной кислотой. И — реакторы со свинцовым покрытием, насосы из сплавов свинца с сурьмой.

В — при 120°С при сульфировании фенола посредством 98%-ной H2SO4; УКП = 0,13 мм/год. Синтезированная фенолсульфо-кислота имеет лучший цвет, чем кислота, полученная в стальной установке или же в установке со свинцовым покрытием.

В — при об. т. — 300°С в растворах любой концентрации вплоть до 100% (керамические плитки, графитовый кирпич). Структурный углерод предпочтительнее при концентрациях H2SO4 выше 60%, а графит при концентрациях H2SO4 ниже 60%. И — сталь, футерованная кирпичом (главным образом со свинцовым покрытием) для изготовления резервуаров для 93—98%-ной H2SO4 и башен для воздушной сушки при производстве H2SO4 контактным способом.

В — при 180°G при производстве фурфурола путем гидролиза овсяной шелухи разбавленной H2SO4 и паром при 405300 Па (4 атм.). И — стальные автоклавы со свинцовым покрытием с последующей футеровкой графитовым кирпичом.

В — при 260°С при выщелачивании никелевой руды посредством H2SO4. Стенки реактора выполнены из стали со свинцовым покрытием (однородно связанным), футерованной кислотостойким и графитовым кирпичом. В процессе эксплуатации температура наружной поверхности стенки реактора достигает порядка 107°С, а внутренней 250— 260°С. Для футеровки из кислотостойкого кирпича силикатные и фурановые замазки непригодны. Превосходными замазками являются эпоксидные, но их трудно наносить. Подходящей считается специальная замазка, на основе фурфуршювого спирта.

В — при т. кип. — 200°С во влажной или сухой SO2 (свинец и его сплавы с сурьмой). Сплав свинца с сурьмой один из самых лучших материалов для изготовления резервуаров, труб, насосов. И — свинцовые трубы, оборудование печей для обжига сульфидов со свинцовым покрытием.

фаты понижают ее. И — стальные резервуары со свинцовым покрытием, трубопроводы, краны (сплав свинца с сурьмой).

В — при об. т. И — стальные реакторы со свинцовым покрытием для производства хлоргидрата анилина.

В — при 0—5°С. И — стальные реакторы со свинцовым покрытием для хлорсульфирования органических соединений.

Кабели телефонной и телеграфной связи прокладывают либо непосредственно в грунте, либо в кабельных каналах. Для сооружения кабельных каналов из бетона применяют фасонные кирпичи на цементной связке длиной 1000 мм, имеющие кабельные фидеры шириной в свету 100 мм. На внутренней поверхности кабельных фидеров предусматривается битумное покрытие. Обычно несколько фасонных кирпичей для кабельного канала укладывают соединением в линию. Места стыков между фасонными кирпичами герметизируют цементным раствором. Такие каналы не являются водонепроницаемыми, так что в кабельные фидеры могут проникать посторонние (грунтовые) воды и компоненты грунта в виде шлама. Коррозионные повреждения возникают преимущественно в этих местах. Канады обычно бывают сырыми и не обеспечивают никакой электрической изоляции по отношению к земле. Переходное сопротивление на землю у кабеля, проложенного в кабельном канале, зависит от размеров кабеля, от вида грунта и от его влажности. Для кабеля длиной 100 м это сопротивление может быть в пределах 20—500 Ом. У кабелей, проложенных в земле, соответствующее сопротивление получается примерно в 100 раз меньшим. В бетонных кабельных каналах прежде протягивали голые свинцовые кабели без покрытия, а кабели с другим материалом оболочки всегда применяли с полимерным покрытием. В настоящее время применяют преимущественно кабели со стальной гофрированной оболочкой или кабели со свинцовой оболочкой и наружным полимерным покрытием. В последнее время кабельные каналы начали сооружать и в виде пластмассовых (полимерных) труб диаметром в свету 100 мм. При водонепроницаемом склеивании такие каналы образуют сплошную трубную нитку. При этом могут получиться низкие точки, где скапливается сконденсировавшаяся влага или вода, проникшая через концы труб. Во многих случаях это уже приводило к коррозионным повреждениям свинцовых кабелей,' протянутых через пластмассовые трубы. Катодная защита кабеля вслед-

ствие его полной электрической изоляции пластмассовыми трубами в таких случаях невозможна. Поэтому кабели со свинцовой оболочкой можно протягивать через кабельные каналы в виде полимерных труб только при выполнении на кабелях дополнительной наружной оболочки из полиэтилена (ПЭ, конструктивное исполнение A-PM2Y). На муфтовых концах броня кабелей дальней связи всегда соединяется с их оболочкой, а броня местных кабелей связи соединяется с оболочкой только в местах, где испытывается влияние переменного тока. Потенциалы различных материалов для оболочек кабелей представлены в табл. 14.1.

Еще несколько лет назад применяли преимущественно кабели со свинцовой оболочкой. В настоящее время в качестве материалов для оболочки кабелей все шире используют углеродистую сталь, медь и алю-

миний. В табл. 2.1. видно, что при одинаковой анодной плотности тока свинец должен корродировать в 2,5 раза быстрее железа. Если к тому же учесть, что кабели телефонной и телеграфной связи имеют значительно меньшую толщину стенки, чем трубопроводы, то отсюда следует, что свинцовые кабели подвергаются большей опасности коррозии, чем трубопроводы. Кабели со свинцовой оболочкой без покрытия всегда протя-тягивают через кабельные каналы.

Для защиты от коррозии при укладке в землю свинцовую оболочку кабелей обвертывают несколькими чередующимися слоями пропитанной бумаги и жидкотекучего битума. Для механической защиты на кабелях небольшого диаметра предусматривается броня из тесно прилегающих друг к другу витков круглой проволоки; на кабелях большого диаметра выполняется броня в виде плющеной проволоки (плоской оплетки). Поверх брони располагается слой пропитанного джута, который хотя и дает некоторую защиту от коррозии, но не обеспечивает электрической изоляции оболочки кабеля по отношению к земле. Бесспорные преимущества по защите от коррозии имеют бесшовные и беспористые оболочки (шланги) из полиэтилена толщиной 1,6—4,0 мм. Активная катодная защита от коррозии поэтому применяется главным образом для кабелей со свинцовой оболочкой, имеющих джутовую изоляцию. Кабели с оболочками из других металлов могут быть подключены к системе катодной защиты, но при этом должны быть проведены особые предупредительные мероприятия [3]. У кабелей с гофрированной стальной оболочкой жилы охватываются лентой из углеродистой стали, сваренной продольным швом без нахлестки. На изготовленной таким способом трубе-оболочке выполняют поперечные гофры для придания ей гибкости. Впадины гофров заполняют пластичной массой, прочно сцепляющейся и с металлом, и с полимерным материалом, а затем всю конструкцию обматывают лентой из полимерного материала. Поверх этого слоя далее получают экструдированием полимерную оболочку из полиэтилена. Полимерная оболочка получается практически беспористой и поэтому обеспечивает хорошую защиту от коррозии. Дефекты могут образоваться только на муфтах и в местах механических повреждений.

Кабели с медной оболочкой применяют лишь в редких случаях. Защитное покрытие у них аналогично выполняемому на кабелях с гофрированной стальной оболочкой. При соединении с кабелями со свинцовой оболочкой (типа РМЬс) медная оболочка становится катодом контактного элемента и не подвергается коррозии. Поскольку кабели с медной оболочкой имеют полимерное покрытие, отношение площадей анода и катода получается весьма большим, так что при соединении разнородных оболочек кабелей для свинцовой оболочки кабеля не наблюдается повышенной опасности коррозии [см. формулу (2.43)].

Для кабелей со свинцовой оболочкой, а также и для других кабелей, имеющих малое переходное сопротивление на землю, потенциал выключения не всегда может быть применен как критерий эффективности катодной защиты, поскольку у них выключается и часть электрохимической поляризации (см. раздел 3.3.1). Поэтому для кабелей связи со свинцовой оболочкой для приближенной оценки обычно используют потенциал включения. В табл. 14.1 представлены стационарные и защитные потенциалы подземных кабелей. Дополнительные сведения о предельных потенциалах имеются в разделе 2.4.

Протяженность зоны катодной защиты кабелей ввиду их гораздо большего продольного электросопротивления и гораздо меньшего сопротивления покрытия получается меньшей, чем в случае трубопроводов. В системах дренажа блуждающих токов на городской территории нередко отводятся блуждающие токи, составляющие 10—15 % всего тягового тока трамвайной линии. С оболочек кабелей через дренажные устройства блуждающих токов к их источникам иногда стекают токи силой 100—300 А. Снижение потенциала у дренажей блуждающих токов в случае кабелей со свинцовой оболочкой без покрытия ввиду их малого переходного сопротивления на землю обычно сказывается лишь на расстоянии нескольких сотен метров [7, 8].

и химическими свойствами. При таких различных структурах грунта образуются геологические коррозионные элементы . (макроэлементы), которые при плохом или поврежденном изоляционном покрытии кабеля приводят к возникновению продольных токов в его оболочке. На анодных участках, где эти токи вновь стекают с кабеля, получаются коррозионные повреждения. Это относится и к кабелям со стальной гофрированной оболочкой с броней и без брони. Кабели со свинцовой оболочкой, располагающиеся около трубопровода с катодной защитой

Для коммунального и промышленного электроснабжения под землей прокладывают кабели низкого напряжения 220/380 В, среднего напряжения 1—30 кВ и высоковольтные — преимущественно на ПО кВ. Для сетей низкого и среднего напряжения в настоящее время обычно используют кабели, имеющие массивные полимерные (пластмассовые) оболочки, например для низковольтных сетей — типов NYY и NAYY, которые не нуждаются в какой-либо защите от коррозии. Кабели с медным экраном и полимерным покрытием, например типов NYCY и NYCWY, тоже достаточно коррозионностойкие. Опасность коррозии существует для кабелей, находивших прежде предпочтительное применение — со свинцовой оболочкой и стальной броней, обвернутых только одним слоем джута, пропитанного битумом, а также для кабелей с алюминиевой и гофрированной стальной оболочкой с полимерным покрытием, если оно повреждено. Для сетей напряжением ПО кВ используют преимущественно кабели в стальных трубах с битумным или полимерным покрытием.

Трудность, указанная в пункте в, может быть преодолена применением локальной катодной защиты от коррозии, как указано в разделе 13. Однако это возможно,, например, на промышленных объектах, но не может быть осуществлено для сетей коммунального электроснабжения. Эффект локальной катодной защиты может быть получен также при специально подобранном расположении анодных заземлителей в грунтах с высоким омическим сопротивлением (см. раздел 13.2) и — с ограничением протяженности зоны защиты—на защищаемых объектах с высоким продольным сопротивлением. Это наблюдается в случае кабелей со свинцовой оболочкой (см. рис. 14.1). Обычная катодная защита от коррозии возможна, если защищаемый объект отсоединен от заземлителей при помощи специальных разъединительных устройств. Это технически выполнимо при прокладке высоковольтных кабелей в стальных трубах.




Рекомендуем ознакомиться:
Связанного регулирования
Связующего материала
Связующим материалом
Свариваемые заготовки
Свариваемых заготовок
Свариваемой поверхности
Свариваемость способность
Сваривается необходим
Семейства поверхностей
Сварочные материалы
Сварочные выпрямители
Сварочных автоматов
Сварочных материалах
Сварочных трансформаторов
Сварочными материалами
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки