Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Скоростями деформирования



Старение, вызванное предварительной пластической деформацией, называется статическим деформационным старением. Старение, развивающееся в процессе пластической деформации, называется динамическим. Условие динамического старения — определенное соотношение между скоростями деформации и диффузионным перемещением растворенных атомов. В данном случае происходит блокировка растворенными атомами дислокаций, движение которых при деформировании по каким-либо причинам замедляется, а вырывание дислокаций из облаков Коттрелла при ускорении их движения служит причиной упрочнения. Указанное выше соотношение устанавливается при определенных температурах, например для низкоуглеродистой стали в диапазоне 520...670 К. Частичное охрупчивание стали при этих температурах называется «синеломкостью».

Исследования, проведенные в хлоркдиых растворах при нормальной температуре со скоростями деформации 7-Ю"4 с"1 и 7-Ю"5 с",1 показали следующее. Исжытанин со скоростью деформации 7-Ю"4 с"1 не выявили, в пределах ошибки эксперимента, изменения пластичности стали по отношению к испытаниям на воздухе. При уменьшении скорости деформации на порядок, величина относительного удлинении изменилась с 22Х при испытании на воздухе, до 25% в нейтральном хлоридном растворе и 17Х в подкисленном хлоридном растворе. Аналогичная закономерность наблюдалась для значений относительного сужения, величина которого для образцов, испытанных на воздухе, составляла - 67%, е нейтральном хлоридном растворе - 712 (ХМЭ; и подкисленном хлоридном растворе - ЗЗХ. Причем наблюдалась хорошая повторяемость результатов. Эффект изменения пластичности проявлялся только при снижении скорости нагружения до определенной величины, ниже которой коррозионный фактор "успевал" проявиться. Последнее, по - видимому, связано со значительным увеличением времени контакта поверхности металла с коррозионной средой. Увеличение параметров пластичности стали в нейтральном хлоридном растворе, по-видимому, вызвано проявлением хемомеханического эффекта, который в подкисленном растворе полностью подавлялся за счет наводороживачия металла в условиях протекания коррозии с водородной деполяризацией, что и приводило к уменьвк ли» параметров пластичности. По действию на параметры пластичности подкисленный хлоридный раствор оказывал такое же влияние, как воздействие отрицательных температур (-60° С). Изменения- пластичности образцов, предварительно выдержг'ных в указанных средах в течение 14 суток и испытанных на воздухе, обнаружено не было. Это свидетело-ствует о механохимической природе изменения пластических свойств.

При этом аналитическая обработка позволила также помимо значения показателя П определить положение центра тяжести концентрационных кривых и площадь под ними. Положение центра, тяжести концентрационной кривой характеризует перемещение основной массы атомов на среднюю глубину, а площадь под кривой оценивает сушу перемещаемых радиоактивных атомов. Из представленных данных можно заключить, что картина распределение изотопа в зоне объемного взаимодействия при КСС и УСВ идентична. В результате проведенных исследований установлено, что при контактной стыковой сварке сопротивлением могут при определенных условиях (импульсный нагрев в сочетании с скоростями деформации превышающими 0,1 м/с) развиваться процессы аномального массопереноса существенно влияющего на формирование соединений. В частности образование металлических связей наблюдалось при величинах деформации, которые на порядок ниже чем при канонических режимах сварки сопротивлением. Количественные показатели массопереноса в данном случае весьма близки к аналогичным показателям при ударной сварке в вакууме.

До сих пор мы обсуждали механическое поведение волокнистых композитов в условиях длительного нагружения. Мы видели, что как матрица, так и волокно дают вклад в процесс замедленного разрушения, каждый своим собственным путем и посредством различных механизмов. Не меньший интерес представляет реакция композита на внешние нагрузки, прикладываемые с разными скоростями деформации. В особенности интересно знать, как влияет повышение скорости деформации на разрушение композиционного материала.

Суммируя данные о влиянии скорости деформации на прочность однонаправленных волокнистых композитов, можно сказать, что, по-видимому, в интервале изменения скорости деформации, обычно используемом в стандартных испытательных машинах, изменения значений прочности не слишком велики. Эти изменения составляют 10 или 20% в зависимости от свойств составляющих и геометрии композита. При испытаниях с разными скоростями деформации наблюдались разные виды разрушения, однако в настоящее время не существует модели для предсказания прочностных свойств различных композитных систем при нагружении с переменными скоростями деформации.

Ряс. 22. Изменение плотности тока активного растворения при потенциале —250 мВ (штриховые кривые) и плотности тока пассивного состояния при потенциале 900 мВ (сплошные кривые) в зависимости от степени деформации в условиях непрерывного нагруже-ния (о) со скоростями деформации:

В процессе горячей пластической деформации связь между напряжениями, деформациями и скоростями деформации неоднозначна и реологические свойства металла в значительной мере определяются тем законом, по которому происходит развитие деформации во времени.

Рис. 210. Кривые упрочнения стали типа В2Ф при высокоскоростной плоской осадке со скоростями деформации 400 (а) и 1050 c-i (б). Температура, °С:

Основное условие получения достоверных результатов в квазистатических испытаниях — поддержание с заданной точностью однородности напряженного и деформационного состояния материала в объеме рабочей части образца. Это позволяет принимать регистрируемые зависимости между напряжением и деформацией за характеристики поведения локального объема материала. Таким методом определены характеристики сопротивления материалов деформированию в большинстве проведенных до настоящего времени исследований, в основном при испытаниях на растяжение или сжатие со скоростями до 10 м/с [69, 167, 208, 210, 305, 406, 409]. Область более высоких скоростей деформирования, особенно при испытаниях на растяжение, обеспечивающих получение наиболее полной информации о поведении материала под нагрузкой, практически не исследована. Такое ограничение исследований обусловлено тем, что с ростом скорости деформации возрастает влияние волновых процессов и радиальной инерции в образце и цепи нагружения, ведущих к нарушению однородности деформации и одноосности напряженного состояния в объеме рабочей части образца и затрудняющих приведение усилий и деформаций в материале. Уменьшение влияния этих эффектов требует разработки специальных методик для испытаний с высокими скоростями деформации.

3. Испытание с параметром e=const, применяемое наиболее часто, обеспечивает регистрацию кривой деформирования о(е) и определение основных прочностных и деформационных характеристик материала: пределов текучести, прочности, сопротивления отрыву, удлинения и поперечного сужения. Соблюдение параметра испытания в серии экспериментов с различными скоростями деформации позволяет провести сопоставление с результатами кратковременных статических испытаний.

е=Ю с-1 необходима масса более 20 т). Следовательно, в испытаниях с повышенными скоростями деформации наиболее рациональным является использование для деформации запаса кинетической или потенциальной энергии (например, потенциальной

Преобразование подобия для изоциклических и изохронных кривых осуществляется с помощью функций подобия по числу циклов и по времени. Эти функции и их параметры определяются из системы базовых экспериментов, выполняемых при мягком нагру-жении с выдержками и без выдержек при различных уровнях амплитуд напряжений с варьируемыми скоростями деформирования и временами выдержек в цикле.

Установка ИМАШ-5С-65 была использована в качестве базы для исследования свойств литых сплавов при высоких температурах, выполненного в Московском автомеханическом институте Л. С. Константиновым с сотрудниками [49]. Установка была конструктивно усовершенствована, что позволило осуществить программированные нагрев и охлаждение образца с заданной скоростью, а также проводить растяжение образца с различными постоянными скоростями деформирования (d& = const), испытание на релаксацию (е = const) и ползучесть (ст = const).

Определенные при испытаниях с высокими скоростями деформирования длинного образца усилие деформирования и удлинение характеризуют не материал в объеме рабочей части образца, а использованный образец как конструктивный элемент.

Армко-железо и алюминиевый сплав Д16 испытывались на растяжение со скоростями деформирования VH 2—2,5 мм/с, 5,8 и 75 м/с в диапазоне температур от —193 до 500°С [54, 55]. В процессе испытания во всем диапазоне скоростей деформирования выдерживалась примерно постоянная скорость деформации е путем поддержания постоянной скорости движения активного захвата образца. Для проведения испытаний использовали образцы с укороченной рабочей частью диаметром 4 мм, длиной 10 мм с резьбовыми головками. Время увеличения скорости движения подвижной головки образца до номинальной (контролировалось по крутизне фронта упругого импульса в динамометре) примерно соответствовало времени пробега упругой волны по удвоенной длине рабочей части образца, что обеспечивало однородность напряженного и деформированного состояний материала в рабочей части образца в соответствии с условием (2.8). Химический состав и режим термообработки материалов приведены в предыдущем параграфе (см. табл. 3). Испытанные материалы имеют различную чувствительность к скорости деформации и температуре, что объясняет их выбор для исследований.

197. Петушков В. Г., Степанов Г. В. Установка для испытания материалов с высокими скоростями деформирования.— Прикл. механика, 1969, № 7, с. 99—102.

Другим типом электрических устройств, работающих с автоматами нагружения, являются следящие устройства, осуществляющие программирование нагрузки по сложному закону (с варьируемыми скоростями деформирования, формой цикла и другими параметрами режима испытаний). Заданная программа •определяет весь ход изменения нагрузки во времени. В качестве задающего программу устройства может быть использован, например, стандартный фотоэлектрический следящий прибор РУ5, позволяющий воспроизводить сложные программы в виде темных линий, нанесенных на перемещающуюся прозрачную ленту. Связанный механически со следящей головкой РУ5 потенциометр вместе с потенциометрическим датчиком включены в •балансную схему, приводящую в действие электрический преобразователь, величины токов в обмотках которого являются функцией отклонения нагрузки от заданного значения. Электрический преобразователь воздействует на регулятор гидроусилителя, являющийся исполнительным органом гидравлического силовозбудителя.

Здесь 'rxal, ryai, rzai — коэффициенты пропорциональности между силами вязкого сопротивления и поступательными (линейными) скоростями деформирования амортизатора; kxai, kyal, kzai — аналогичные коэффициенты пропорциональности между моментами и угловыми скоростями.

статическое нагружение с разными скоростями деформирования, а также длительное статическое нагружение при постоянной и переменной температурах;

Кривые 3 и 4 соответствуют неизотермическому циклу с такими же скоростями деформирования в полуциклах растяжения и сжатия. Температура в пределах каждого полуцикла оставалась постоянной: растяжение — 650, сжатие — 150° С и изменялась при 0 = 0. Как видно из рис. 5.13, независимо от уровня температуры в полуцикле сжатия кривые 1 и 3 практически совпадают при равных скоростях деформирования и одинаковой амплитуде необратимых деформаций. Вместе с этим был отмечен обратный эффект — влияние деформаций ползучести, развивающихся при высокой температуре, на ход кривой активного нагружения в последующем полуцикле с более низкой температурой. В этом случае в эксперименте наблюдается некоторое смещение кривой активного нагружения вниз по сравнению с неизотермическими испытаниями без выдержек. На рис. 5.14 показаны диаграммы деформирования стали Х18Н9 при неизотермическом нагружении, характерные для стабильного цикла. Нагружение осуществлялось по жесткому режиму с контролируемым законом изменения деформаций, температура изменялась в момент перехода через нуль по напряжениям от 150 до 650° С в процессе одноминутной выдержки. Кривые 1 N. 2 соответствуют циклу без выдержки, 3 та 4 — циклу с выдержкой при растяжении. Выдержка осуществлялась при а = const до момента достижения заданного значения деформации. Как следует из рис. 5.14. смещение кривой 4 относительно кривой 2 составляет 10—15%. Отмеченное влияние деформаций ползучести при высокой температуре на активное на-гружение при более низкой температуре может быть описано, как уже указывалось выше для изотермического случая, с использованием подходов, изложенных в главах 6, 7.

Применяемые методы и средства малоцикловых и длительных циклических испытаний дают возможность определить основные параметры"1 обобщенных диаграмм циклического упругопласти-ческого деформирования ?•?', А, В, С, х, a, a,G(k), m (k) (см. главы 2—5) преимущественно для изотермического нагружения; определить параметры уравнений состояния Ср (кр, Т), g?» Сп (кп, Т), Кп (Т, г)) в теории термовязкопластичности с комбинированным упрочнением преимущественно для неизотермического нагружения (см. гл. 6); определить коэффициенты подобия z и параметры функций р (z), гв (Т), Е (Т), f (z), Ф (г, Т) в структурной модели среды преимущественно для циклического непропорционального нагружения с учетом неизотермичности (см. гл. 7). Для каждого из перечисленных выше подходов к получению уравнений состояния базовыми по мере усложнения условий нагружения оказываются эксперименты при однократном растяжении с варьируемыми скоростями деформирования и изотермические циклические испытания с заданными скоростями деформп-

Сравнение предельных степеней деформаций при осадке со скоростями деформирования 0,001—100 м/сек показало, что у сплавов АК6Г АК8, АМгб и АВ при холодной осадке пластичность повышается на 20—25%; у сплавов Х18Н9Т, ЭИ437А, титанового сплава ВТ1 — понижается примерно на 40%; у конструкционных и инструментальных сталей пластичность не изменяется. При осадке с нагревом до ковочных температур пластичность становится практически не ограниченной. Вместе с тем, опыты по штамповке взрывом труднодеформируемых сплавов показывают удовлетворительную штампуемость.




Рекомендуем ознакомиться:
Скоростью происходит
Скоростью растяжения
Скоростью восстановления
Скоростью зависящей
Скоростях фильтрации
Скоростях охлаждения
Сближения направляющих
Скоростями деформаций
Скоростями перемещения
Скоростей автомобилей
Скоростей химических
Скоростей изнашивания
Скоростей называется
Скоростей определяется
Скоростей отдельных
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки