Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Светового моделирования



Изломы изучают на макро- и микроуровне (при увеличениях до 50 тыс. крат и выше). Метод визуального изучения изломов, а также с помощью светового микроскопа при небольших увеличениях называется фрактографией. Исследование особенностей топкой структуры изломов под электронным микроскопом носит название микрофрактографии (рис. 3, г).

кристаллографических направлениях неодинакова. Вследствие этого кристаллы мартенсита имеют форму пластин,которые закономерно ориентированы в исходном аустените: (011) мартенсита (1П) аустенита, [ПО] аустенита 1111 I мартенсита. Кристаллы мартенсита в зависимости от состава стали (в первую очередь в зависимости от содержания углерода), а, следовательно, и от температуры своего образования могут иметь разную морфологию и различную субструктуру. Различают два основных морфологических типа мартенситных кристаллов: пакетный (или реечный) и пластинчатый (двойникованпый). Пакетный мартенсит образуется в углеродистых и легированных конструкционных сталях (содержащих не более 0,5 % С), у которых точка М лежит при сравнительно высоких температурах (рис. 108). Кристаллы пакетного мартенсита имеют форму тонких (0,1—0,2 мкм) пластин (реек). Группа параллельных кристаллов образует вытянутый пакет (рис. ПО, о, 109, б и г). В каждом зерне аустенита обычно возникает несколько (2—4) пакетов мартенсита (рис. 110, а). При увеличениях светового микроскопа отдельные кристаллы (монокристаллы) мар-генсита в пакете не видны и выявляются лишь границы пакетов. Реечные кристаллы мартенсита обычно разделены прослойками остаточного аустенита (рис. ПО, а). Так как пакетный мартенсит в низкоуглеродистых сталях образуется при высоких температурах, он претерпевает частичный распад (самоотпуск). Внутри кристаллов мар-гепсита выделяется некоторое количество карбидных частиц, что приводит к образованию кубического мартенсита. Субструктура пакетного мартенсита сложная и характеризуется большой плотностью дислокаций (~10'- см"2).

Непосредственно перед зоной быстрого, ускоренного роста трещины мезолинии были сформированы в результате столь значительной интенсивности повреждения материала, что они могли быть хорошо выявлены при небольшом увеличении светового микроскопа. На этом этапе развития усталостного разрушения можно считать, что процесс регулярного чередования эксплуатационных нагрузок характеризовали усталостные макролинии.

Исследование изломов выполняют: а) визуально; б) с помощью светового микроскопа; в) с помощью электронного микроскопа; г) методом ренттеноструктурного анализа; д) методом микротвердости; е) путем анализа микрогеометрии изломов по профило-граммам.

Увеличение светового микроскопа ............

Разрешение светового микроскопа, мкм.........

наблюдаемую при увеличениях светового микроскопа. Электронно-микроскопическое исследование обнаружило общую тенденцию увеличения размера средних и крупных частиц карбида за счет более мелких.

Отбор проб паяных соединений для микроисследования с помощью светового микроскопа производят с учетом наиболее полной оценки исследуемого свойства в одном образце и удобства проведения металлографических исследований.

Для исследований микроструктуры наиболее часто используют световые мшфоскопы МИМ-7 и МИМ-8 Разрешающая способность оптического светового микроскопа с применением масляного иммерсионного объектива соответствует практически 1 мкм.

диапазоном увеличений светового микроскопа на нижней границе и

На рис. 1.22, А показаны полученные с помощью светового микроскопа фотографии микроструктур, соответствующие разным точкам петлеобразной кривой напряжение — деформация. Эти микрофотографии показывают [13], что указанная петля непосредственно связана с мартенситным превращением, вызванным напряжениями, и с обрат-

8-7. ИССЛЕДОВАНИЕ УГЛОВОГО КОЭФФИЦИЕНТА ИЗЛУЧЕНИЯ ПО МЕТОДУ СВЕТОВОГО МОДЕЛИРОВАНИЯ

методу светового моделирования..... 378

Г. Метод светового моделирования '

Рассмотрение экспериментальных методов исследования радиационного теплообмена начато с проведения детального анализа условий подобия этих процессов для общей постановки. Затем последовательно рассмотрены методы теплового, электрического и светового моделирования теплообмена излучением. Изложено современное состояние каждого экспериментального метода и указаны перспективы их дальнейшего развития.

Разработаны также экспериментальные методы определения коэффициентов облученности с помощью светового [Л. 27, 149, 150, 156] и теплового [Л. 157—159] моделирования. При этом наибольшее развитие и практическое применение получил метод светового моделирования, с помощью которого оказывается возможным определять не только угловые коэффициенты между поверхностями любой формы при наличии поглощающей среды, но и коэффициенты облученности между объемными зонами в системах с диатермической и ослабляющей средой [Л. 156].

Среди методов экспериментального исследования радиационного теплообмена важное место занимает метод светового моделирования [Л. 27, 69, 149, 150, 156, 181—183, 186—191, 386—389]. Физическая сущность этого метода заключается в аналогии законов переноса излучения для видимой части спектра и для всех других частот. Математически такая аналогия выражается в идентичности уравнений, описывающих процессы радиационного обмена во всем диапазоне частот. Поэтому, создав световую модель подобной образцу в отношении собственного излучения, а также геометрических характеристик среды и поверхности, можно быть уверенным

Метод светового моделирования радиационного теплообмена применяется в излучающих системах как с диатермической, так и с ослабляющей средой. В техническом отношении световое моделирование в системах с диатермической средой осуществляется проще, в связи с чем первыми и были созданы именно такие световые модели. В дальнейшем были предложены световые модели и с ослабляющей средой, 'позволившие проанализировать ее влияние на процессы радиационного теплообмена для различных случаев [Л. 27, 69, 182, 186].

Световое моделирование радиационного теплообмена обладает рядом достоинств, способствующих его применению. Во-первых, сам по себе принцип светового моделирования позволяет исследовать процесс радиационного теплообмена в чистом виде и избежать ошибок, вносимых конвекцией и кондукцией, которые существенно осложняют экспериментальное исследование радиационного переноса на тепловых моделях. Во-вторых, световая модель имеет комнатную температуру, что существенно упрощает все операции экспериментирования и измерения по сравнению с излучающей системой, работающей при высоких температурах. В-третьих, применяемые для регистрации световых потоков измерительные средства могут быть изготовлены с большей чувствительностью и точностью, чем измерительные приборы для теплового излучения. И, наконец, метод светового моделирования является очень эффективным способом для определения как локальных, так и средних коэффициентов облученности. Его использование для этой цели дало хорошие результаты [Л. 27, 156].

Одновременно с этим следует отметить и недостатки метода светового моделирования. К ним относится прежде всего то обстоятельство, что на световой модели относительно просто можно задать светимость 'поверхности (соответствующую поверхностной плотности собственного излучения граничной поверхности исследуемой системы) и нельзя задать в явном виде объемные и поверхностные плотности результирующего излучения. Кроме того, при моделировании собственного излучения ослабляющей среды излучающие объемные зоны имитируются на модели с помощью излучения поверхности, ограничивающей моделируемую объемную зону [Л. 27,

В то же время имеется полная возможность избежать отмеченных затруднений и решать с помощью светового моделирования задачи при задании на граничной поверхности и в объеме среды плотностей собственного и результирующего излучения. Такая возможность позволит существенно расширить сферу шрименимости светового моделирования.

Как уже упоминалось, теоретической основой светового моделирования является идентичность уравнений радиационного обмена во всем диапазоне частот электромагнитного излучения. Анализ уравнений и условий подобия радиационного теплообмена изложен в гл. 9. Результаты этого анализа в полной мере применимы и для светового моделирования теплообмена излучением. Однако тот факт, что для светового моделирования используется не весь возможный диапазон частот от v== = 0 до оо, а весьма ограниченный участок видимого спектра, заставляет отказаться от выполнения подобия распределения спектральных характеристик по частоте. Иными словами, световое моделирование строго справедливо для спектрального и серого излучения и его использование для селективных излучающих систем сопряжено с необходимостью дополнительных расчетов осредненных по частоте оптических параметров и последующего анализа возникающих при этом погрешностей. Эти обстоятельства следует иметь в виду при использовании методов светового моделирования.




Рекомендуем ознакомиться:
Связанные колебания
Связанных отложений
Семейства характеристик
Связующими материалами
Свариваемые материалы
Свариваемых поверхностей
Свариваемым поверхностям
Свариваемость ограниченная
Сваривается аргонодуговой
Сварочный генератор
Сварочные генераторы
Сварочные проволоки
Сварочных аппаратах
Семейство механизмов
Сварочных процессов
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки