Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Волокнистый наполнитель



Наибольшее внимание привлекают алюминиевые сплавы, армированные волокнами из бора, углерода, нержавеющей стали и бериллия; титановые сплавы, армированные волокнами молибдена и бериллия, и никелевые сплавы, армированные волокнами вольфрама, молибдена и их сплавов. Данные о прочности некоторых волокон и армированных материалов приведены в табл. 156 и 157. Такие материалы наиболее перспективны для деталей, работающих в условиях, близких к одноосному растяжению, например лопаток турбин и компрессоров. Максимальные рабочие температуры этих материалов близки к температуре плавления матрицы. На рис. 465 в качестве примера показаны температурные зависимости прочности для алюминия, армированного стеклянными и кварцевыми волокнами. Для сравнения на графике приведены свойства дисперсноупроч'ненного алюминия и алюминиевого сплава. На рис. 466 показана макро- и микроструктура прутка из сплава нихром, армированного волокнами вольфрама (50%).

Композицию на основе меди, армированной волокнами вольфрама, получали методом намотки вольфрамовой проволоки на цилиндрическую оправку, последующего осаждения на поверхность волокна электролитической меди и диффузионной сварки под давлением пакета, набранного из нескольких слоев волокна с медным покрытием. Диффузионная сварка осуществлялась в вакууме при температуре 700° С, давлении 800 кгс/см2 и времени выдержки 60 мин [146, 172]. Получений таким образом материал, содержащий 37 об.% вольфрамового волокна с диаметром 20 мкм, имел прочность 120 кгс/мм2. При этом же содержании волокна, но диаметром 40 мкм, предел прочности композиционного материала был равен 135 кгс/мм2.

Прессование с последующим спеканием для получения волокнистых композиционных материалов используется в тех случаях, когда волокна обладают высокой стабильностью в контакте с материалом матрицы при температурах, достаточных для спекания матриц. Во всех других случаях в процессе длительной выдержки спрессованной заготовки при высокой температуре, необходимой для уплотнения матрицы, одновременно происходит взаимодействие волокон с матрицей, приводящее к снижению свойств материала. Кроме того, как было показано Баски на материалах на основе никелевого сплава типа хастеллой, армированных волокнами вольфрама и молибдена, в результате различного температурного коэффициента линейного расширения компонентов происходит отслаивание матрицы от волокна в процессе охлаждения материала от температуры спекания до комнатной.

Методом горячего прессования получали твердосплавный материал ВК6 (94% WC, 6% Со), армированный волокнами вольфрама [69]. Температура прессования составляла 1400—1500° С, давление прессования 100—160 кг/см2, время прессования 3— 5 мин. В этих условиях в процессе прессования образуется жидкая фаза [Со + (WC)], которая взаимодействует с вольфрамовым волокном, образуя на его поверхности хрупкую фазу. Для предотвращения взаимодействия на волокно наносили слой карбида циркония толщиной 3—4 мкм методом осаждения из парогазовой фазы. Армирование вольфрамовыми волокнами сплава В Кб позволило повысить ударную вязкость при комнатной и повышенной температурах в 1,5—2,0"*раза.

пытания проводили с серебром, армированным дискретными волокнами вольфрама. Когда в материале содержатся дискретные волокна, необходимо принимать во внимание изменение напряжений на граничных поверхностях. Если полагать, что имеет место выравнивание касательных напряжений на граничных поверхностях, среднее напряжение в волокне можно представить как

Так, композит с матрицей из чистой меди, армированной волокнами вольфрама, относится к первому классу; если Си легирована небольшим количеством Ti, то этот композит следует отнести ко втором}' класс}'. При повышенных концентрациях титана на поверхности раздела появляются интерметаллические соединения и композит следует отнести к третьем}' классу.

ККМ с металлическими волокнами. Керамику армируют волокнами вольфрама, молибдена, стали, ниобия. Основная цель введения в керамику металлических волокон заключается в образовании пластичной сетки, которая способна обеспечить целостность керамики после ее растрескивания и уменьшить вероятность катастрофического разрушения. Металлические волокна не взаимодействуют с оксидной керамикой вплоть до температур 2073 - 2773К. Изготавливают такие ККМ методом горячего прессования.

Наибольшее внимание привлекают алюминиевые сплавы, армирииаппшс DU-локнами из бора, углерода, нержавеющей стали и бериллия; титановые сплавы, армированные волокнами молибдена и бериллия, и никелевые сплавы, армированные волокнами вольфрама, молибдена и их сплавов. Данные о прочности некоторых волокон и армированных материалов приведены в табл. 156 и 157. Такие материалы наиболее перспективны для деталей, работающих в условиях, близких к одноосному растяжению, например лопаток турбин и компрессоров. Максимальные рабочие температуры этих материалов близки к температуре плавления матрицы. На рис. 465 в качестве примера показаны температурные зависимости прочности для алюминия, армированного стеклянными и кварцевыми волокнами. Для сравнения на графике приведены свойства дисперсноупрочиенного алюминия и алюминиевого сплава. На рис. 466 показана макро- и микроструктура прутка из сплава нихром, армированного волокнами вольфрама (50%).

Исследование на модельной системе было проведено Петрасе-ком и Уитоном [18] с целью изучения влияния легирующих элементов на механические свойства и микроструктуру композиционных материалов, упрочненных металлическими волокнами. Двой-^ ные медные сплавы использовали в качестве матрицы для композиций с волокнами вольфрама. Легирующие элементы выбирались таким образом, чтобы получаемые двойные медные сплавы позволили выявить влияние отдельных элементов на взаимодействие матрицы с волокном. Данные, полученные для растворимых элементов в модельной системе, могут быть связаны с поведением этих элементов в жаропрочных сплавах. Эти данные служат основой для модифицирования состава жаропрочного сплава матрицы с тем, чтобы контролировать взаимодействие между матрицей и волокном.

Пропитка пучков вольфрамовых волокон жидкими двойными медными сплавами осуществлялась в условиях, идентичных используемым ранее для композиций с матрицей из чистой меди. Содержание легирующего элемента каждого двойного медного сплава было ограничено количеством, которое позволило обеспечить температуру плавления, равную 1150° С или ниже, чтобы произвести пропитку при 1200° С. Сравнивалось влияние легирующих элементов на свойства композиций, упрочненных волокнами вольфрама, и системы, образованной взаимно нерастворимыми компонентами (в случае матрицы из чистой меди). В качестве легирующих элементов изучались алюминий, хром, кобальт, ниобий, никель и титан.

Взаимодействие на поверхности раздела матрицы с волокном оказывает также влияние на сопротивление удару композиционных материалов. Уинз и Петрасек [28] рассмотрели данные по сопротивлению удару композиций на основе металлической матрицы, упрочненной волокнами вольфрама. Были исследованы матрицы трех видов: медь, медь —10% Ni и никелевый жаропрочный сплав. Изменение вида матрицы позволило сравнить влияние различных факторов на сопротивление удару композиции при испытаниях на маятниковом копре. Медь представляла пластичную нереакциовноспособную матрицу, а жаропрочный сплав — хрупкую реакционноспособную матрицу. Сопротивление удару композиций, в которых наблюдали взаимодействие с волокном, было ниже сопротивления удару композиций, в которых данное взаимодействие отсутствовало. Кроме того, сопротивление удару уменьшалось с увеличением глубины зоны взаимодействия. Хрупкий слой рекристаллизованного вольфрама действует на снижение сопротивления удару таким же образом, как было показано ранее для предела прочности.

Материал криолон наряду с дисперсными наполнителями (MoS2> бронза) содержит волокнистый наполнитель в виде измельченных углеродных волокон, что обеспечивает повышение механических свойств и теплопроводности, а также снижение интенсивности изнашивания, особенно в области низких температур. Общим для материалов этого типа является снижение коэффициента трения и износостойкости при повышении температуры. Криолон сохраняет работоспособность при температурах от -200 до +200°С.

Установлено, что параметр кристаллической ячейки всех материалов с повышением температуры увеличивается незначительно, при этом у композиционных материалов этот параметр больше. Величина межслоевого расстояния практически не зависит от температуры до момента достижения температуры плавления кристаллической фазы. Однако введение наполнителей приводит к изменению межслоевого расстояния, при этом природа и форма частиц наполнителя оказывают различное влияние на формирование надмолекулярной структуры. Поэтому матрица материала криолон-3, содержащего волокнистый наполнитель, имеет межслоевое расстояние большее, чем у чистого ПТФЭ, в то время как структура матрицы материала КВН-3, содержащего дисперсные наполнители, характеризуется межслоевым расстоянием меньшим, чем у чистого ПТФЭ. Температура 553 К для ПТФЭ является критической. Начиная с этой температуры идет процесс плавления кристаллических областей, который заканчивается при температуре 603 К. Степень "дальнего" порядка в матрице при этом уменьшается,

параметр больше. Величина межслоевого расстояния практически не зависит от температуры до достижения температуры плавления кристаллической фазы. Однако влияние наполнителей вызывает изменение межслоевого расстояния, при этом природа и форма частиц наполнителя оказывают различное влияние на формирование надмолекулярной структуры. Поэтому матрица криолона-3, содержащего волокнистый наполнитель, имеет межслоевое расстояние большее, чем у чистого ПТФЭ, в то время как структура матрицы материала КВН-3, содержащего дисперсные наполнители, характеризуется межслоевыми расстояниями меньшими, чем у чистого ПТФЭ. Степень кристалличности матрицы с повышением температуры возрастает (рис. 6.19).

Фенолит 5 (СТУ 30-14023-63) Фенолформальдегидная смола, модифицированная поливинил-хлоридом, волокнистый наполнитель Компрессионное прессование с предварительным подогревом

Основные методы получения углерод-углеродного композита включают высокотемпературную обработку углепластиков и нанесение на углеродный волокнистый наполнитель пироутлерода, образующегося при разложении углеводородов. Существуют жидкофазный, газофазный и комбинированный способы получения УУКМ.

Бурное развитие сверхзвуковой авиации и космической техники, в том числе разработка конструкций возвращаемых космических аппаратов, которые должны успешно преодолевать плотные слои атмосферы, вызвало необходимость интенсивных поисков материалов для абляционных покрытий. Основными функциями абляционного слоя является предотвращение перегрева и разрушения летательного аппарата. Наибольшее распространение в качестве абляционных покрытий получили композиционные материалы на основе полиамидных волокон и фенолоформальдегидных связующих. Однако, как отмечает Энгел [54], использование таких материалов в ракетах земля — воздух является нежелательным, поскольку в процессе их абляции наблюдается выделение ионов, создающих радиопомехи, что затрудняет осуществление радиоуправления ракетами. Считают, что во избежание этого, необходимо применять особо чистые композиции, в частности на основе кремнеземного волокна, содержащего менее 25 млн~!, и эпоксидно-кремнийорганического связующего. В процессе абляции такого материала происходит обугливание отвержденного эпоксидного связующего и образование вспененного кремнийорганического полимера в процессе газоотделения и сублимации. Армирующий волокнистый наполнитель обеспечивает прочность материала.

Связующее Волокнистый наполнитель OJ & 3S Q ? о.

Материал криолон наряду с дисперсными наполнителями бронза) содержит волокнистый наполнитель в виде измельченных углеродных волокон, что обеспечивает повышение механических свойств и теплопроводности, а также снижение интенсивности изнашивания, особенно в области низких температур. Общим для материалов этого типа является снижение коэффициента трения и износостойкости при повышении температуры. Криолон сохраняет работоспособность при температурах от -200 до +200°С.

Установлено, что параметр кристаллической ячейки всех материалов с повышением температуры увеличивается незначительно, при этом у композиционных материалов этот параметр больше. Величина межслоевого расстояния практически не зависит от температуры до момента достижения температуры плавления кристаллической фазы. Однако введение наполнителей приводит к изменению межслоевого расстояния, при этом природа и форма частиц наполнителя оказывают различное влияние на формирование надмолекулярной структуры. Поэтому матрица материала криолон-3, содержащего волокнистый наполнитель, имеет межслоевое расстояние большее, чем у чистого ПТФЭ, в то время как структура матрицы материала КВН-3, содержащего дисперсные наполнители, характеризуется межслоевым расстоянием меньшим, чем у чистого ПТФЭ. Температура 553 К для ПТФЭ является критической. Начиная с этой температуры идет процесс плавления кристаллических областей, который заканчивается при температуре 603 К. Степень "дальнего" порядка в матрице при этом уменьшается,

параметр больше. Величина межслоевого расстояния практически не зависит от температуры до достижения температуры плавления кристаллической фазы. Однако влияние наполнителей вызывает изменение межслоевого расстояния, при этом природа и форма частиц наполнителя оказывают различное влияние на формирование надмолекулярной структуры. Поэтому матрица криолона-3, содержащего волокнистый наполнитель, имеет межслоевое расстояние большее, чем у чистого ПТФЭ, в то время как структура матрицы материала КВН-3, содержащего дисперсные наполнители, характеризуется межслоевыми расстояниями меньшими, чем у чистого ПТФЭ. Степень кристалличности матрицы с повышением температуры возрастает (рис. 6.19).

ячейки КМ двухфазная среда: первая фаза — пористое связующее вещество, вторая — волокнистый наполнитель.




Рекомендуем ознакомиться:
Вспомогательные поверхности
Вспомогательных элементов
Вспомогательных механизмов
Вспомогательных параметров
Вспомогательных процессов
Вспомогательными механизмами
Вспомогательным устройствам
Вспомогательной плоскости
Вспомогательного двигателя
Вспомогательного механизма
Выполняется уравнение
Вспомогательном производстве
Встряхивающего механизма
Встречает сопротивление
Встречает значительные
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки