Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Возможности дальнейшей



Расширение возможности автоматизации транспортирования грузов толкающими конвейерами дает оснащение их грузовых кареток самоотцепом-автостопом (рис. 2.14). Управляющий элемент / этого устройства при набегании на хвостовую часть 2 остановленной впереди грузовой каретки поворачивается и, опуская упор 3, освобождает его от связи с выступом тяговой цепи. Это позволяет останавливать первую каретку в конкретном месте трассы с помощью управляемого выдвижного клинового элемента, тогда как следующие каретки могут останавливаться автоматически впритык друг к другу.

Наличие большого объема информации о технологическом процессе, о состоянии среды, об относительном расположении в пространстве объектов манипулирования открывает широкие возможности автоматизации разнообразных операций, включая такие тонкие, как сварка элементов сложной формы, сборка узлов с компактным расположением деталей. При этом робототехническая система выбирает нужные детали из полного комплекта, поступающего на рабочую позицию, регулирует транспортные потоки. В конечном счете именно такие робототехнические системы окажутся элементами, связывающими отдельные технологические операции в единую цепь полностью автоматизированного производства. Здесь, говоря об автоматизации производства, мы имеем в виду не те узкоспециализированные машины-автоматы, которые создаются для выпуска определенного вида продукции. Речь идет о широком использовании универсального оборудования с числовым программным управлением, переналадка которого сводится, по сути дела, к смене программы работы.

- большие возможности автоматизации контрольных

Основной недостаток метода связан с тем, что он позволяет регистрировать только поверхностные и сквозные дефекты типа несплошностей. Кроме того, он чувствителен к чистоте обработки поверхности, возможности автоматизации метода невелики, а повторяемость результатов контроля невысокая.

- большие возможности автоматизации контрольных операций.

Электромагнитные методы неразрушающего контроля обладают такими положительными качествами, как бесконтактность, высокая производительность, получение первичной информации в виде электрических сигналов, простота конструкции и высокая надежность первичных преобразователей, способность работать в экстремальных условиях [41]. Эти достоинства определяют широкие возможности автоматизации электромагнитного контроля. Выходной сигнал электромагнитного преобразователя одновременно зависит от изменения химического состава и строения контролируемого объекта, наличия дефектов типа нарушения сплошности, отклонений в технологии изготовления изделия, изменения расстояния между объектом контроля и преобразователем и ряда других факторов [42]. Контроль изделий по совокупности изменяемых параметров не встречает затруднений, однако, необходимо применять специальные методы выделения сигнала, характеризующего интересующий показатель качества с одновременным подавлением сигналов от мешающих факторов [43]. Электромагнитные методы применяются для повышения качества и обеспечения безопасной эксплуатации оборудования на всех жизненных стадиях, включая выплавку стали, прокат листа, изготовление, монтаж, диагностику в процессе эксплуатации и прогнозирование остаточного ресурса.

Наличие большого объема информации о технологическом процессе, о состоянии среды, об относительном расположении в пространстве объектов манипулирования открывает широкие возможности автоматизации разнообразных операций, включая такие тонкие, как сварка элементов сложной формы, сборка узлов с компактным расположением деталей. При этом робототехническая система выбирает нужные детали из полного комплекта, поступающего на рабочую позицию, регулирует транспортные потоки. В конечном счете именно такие робототехнические системы окажутся элементами, связывающими отдельные технологические операции в единую цепь полностью автоматизированного производства. Здесь, говоря об автоматизации производства, мы имеем в виду не те узкоспециализированные машины-автоматы, которые создаются для выпуска определенного вида продукции. Речь идет о широком использовании универсального оборудования с числовым программным управлением, переналадка которого сводится, по сути дела, к смене программы работы.

Электромагнитные методы неразрушающего контроля обладают такими положительными качествами, как бесконтактность, высокая производительность, получение первичной информации в виде электрических сигналов, простота конструкции и высокая надежность первичных преобразователей, способность работать в экстремальных условиях [41]. Эги достоинства определяют широкие возможности автоматизации электромагнитного контроля. Выходной сигнал электромагнитного преобразователя одновременно зависит от изменения химического состава и строения контролируемого объекта, наличия дефектов типа нарушения сплошности, отклонений в технологии изготовления изделия, изменения расстояния между объектом контроля и преобразователем и ряда других факторов [42]. Контроль изделий по совокупности изменяемых параметров не встречает затруднений, однако, необходимо применять специальные методы выделения сигнала, характеризующего интересующий показатель качества с одновременным подавлением сигналов от мешающих факторов [43]. Электромагнитные методы применяются для повышения качества и обеспечения безопасной эксплуатации оборудования на всех жизненных стадиях, включая выплавку стали, прокат листа, изготовление, монтаж, диагностику в процессе эксплуатации и прогнозирование остаточного ресурса.

Для простых по конфигурации деталей часто заготовкой является прокат (прутки, трубы и т. п.). Хотя в этом случае объем механической обработки возрастает, такая заготовка может быть достаточно экономичной из-за низкой стоимости проката, почти полного отсутствия подготовительных операций и возможности автоматизации процесса обработки.

Этот метод обеспечивает, наибольшие возможности автоматизации процесса контроля и осуществления автоматической обратной связи контроля и технологического процесса изготовления изделия. Преимуществом метода является возможность проведения непрерывного высокопроизводительного контроля качества изделия, обусловленная высоким быстродействием применяемой аппаратуры. По чувствительности этот метод не уступает радиографии.

Получение первичной информации в виде электрических сигналов, бесконтактность и высокая производительность определяют широкие возможности автоматизации вихретокового контроля.

Поддержание автомобилей в технически исправном состоянии в соответствии с требованиями стандартов по токсичности и дымности в значительной степени зависит от уровня организации технического обслуживания и ремонта подвижного состава. Диагностика как составная часть системы технического обслуживания является эффективным средством получения информации о техническом состоянии автомобиля. Простейшая диагностика ограничивается выдачей заключения о возможности дальнейшей его эксплуатации, более совершенная диагностика предусматривает поиск и определение вида неисправностей, выбор технических мероприятий для их устранения и прогнозирование остаточного ресурса.

1) обследование работавшей конструкции для определения возможности дальнейшей эксплуатации или необходимости проведения ремонта;

Результаты анализа повреждений и параметров технического состояния должны быть дополнены в базу данных и оформлены в виде технического заключения с решением о продолжении дальнейших исследований напряженно-деформационного состояния и характеристик материалов или возможности дальнейшей эксплуатации с указанием назначенного ресурса.

При обследовании технического состояния оборудования применяются современные методы и средства неразрушающего контроля и анализа. По итогам диагностирования проводятся поверочные расчеты на прочность, расчет остаточного ресурса и выдается экспертное заключение о возможности дальнейшей безопасной эксплуатации оборудования.

Предложенные в табл. 2 рекомендации позволяют избегать утомительных и дорогостоящих анализов и дают достаточно информации о возможности дальнейшей эксплуатации машин. Но этой информации во многих случаях оказывается недостаточно для принятия решения.

4.4.2. По результатам обследования ВНИИнефтемаш составляет заключение о возможности дальнейшей эксплуатации сосудов и аппаратов установок нефтеперерабатывающих заводов.

Стандарт предприятия передан для использования в ГП "Салаватнефтемаш", АООТ "Урало-Сибирские магистральные нефтепроводы", АООТ "УНПЗ" и другие предприятия для оценки возможности дальнейшей эксплуатации нефтехимического оборудования с обнаруженными при диагностировании дефектами типа "смещение кромок".

Поскольку прогнозирование остаточного ресурса относится к конкретному, индивидуальному объекту, а гфсмноз неизбежно содержит элементы вероятностного характера, то возника гг вопрос об истолковании вероятностных выводов применительно к ищ ивидуальным объектам и индивидуальным ситуациям. Современная тео эия вероятностей и математическая статистика традиционно отдают предпочтение статистической интерпретации вероятности как единственном} толкованию, имеющему объективный смысл. Аналогичное толкование / ают и в системной теории надежности, развитой в первую очередь прим мнительно к массовой продукции, работающей в статистически однороди >гх условиях. Применительно к уникальным объектам приходится использот ать менее популярное понятие индивидуальной, субъективной или байессвской вероятности как меры уверенности в истинности суждения. Теорш статистических решений почти целиком основана на байесовском истолковании вероятности, причем выводы индивидуального характера базирук ггся на статистической информации, полученной из анализа представител эных выборок. Применительно к прогнозированию индивидуальных показателей надежности роль статистической информации играют данные о на рузках, свойствах материалов, соединений и деталей, причем эти данные < тносятся либо к массовым явлениям, либо к эргодическим процессам. Г снятия индивидуальных показателей надежности, в конечном счете, представляют собой математическую формализацию интуитивных представлений, которые использует группа экспертов при обсуждении вопроса о возможности дальнейшей эксплуатации конкретного технического объекта.

Расчеты полостей пресс-формы с учетом всех факторов затруднительны, поэтому их изготовляют с учетом возможности дальнейшей доводки. Наружные оформляющие части отливок, проектируют уменьшенными, а внутренние - увеличенными. При этом принимают в расчет соответственно нижние и верхние пределы усадки с тем, чтобы при доводке пресс-формы оставался известный запас материала для снятия стружки. В противном случае необходимо наращивать элементы пресс-формы методом заварки, что сделать очень трудно.

Поскольку прогнозирование остаточного ресурса относится к конкретному, индивидуальному объекту, а прогноз неизбежно содержит элементы вероятностного характера, то возникает вопрос об истолковании вероятностных выводов применительно к индивидуальным объектам и индивидуальным ситуациям. Современная теория вероятностей и математическая статистика традиционно отдают предпочтение статистической интерпретации вероятности как единственному толкованию, имеющему объективный смысл. Аналогичное толкование дают и в системной теории надежности, развитой в первую очередь применительно к массовой продукции, работающей в статистически однородных условиях. Применительно к уникальным объектам приходится использовать менее популярное понятие индивидуальной, субъективной или байесовской вероятности как меры уверенности в истинности суждения. Теория статистических решений почти целиком основана на байесовском истолковании вероятности, причем выводы индивидуального характера базируются на статистической информации, полученной из анализа представительных выборок. Применительно к прогнозированию индивидуальных показателей надежности роль статистической информации играют данные о нагрузках, свойствах материалов, соединений и деталей, причем эти данные относятся либо к массовым явлениям, либо к эргодическим процессам. Понятия индивидуальных показателей надежности, в конечном счете, представляют собой математическую формализацию интуитивных представлений, которые использует группа экспертов при обсуждении вопроса о возможности дальнейшей эксплуатации конкретного технического объекта.

3. Виды локальных повреждений поверхностей. Локальные повреждения, которые охватывают лишь отдельные участки поверхности, более трудно поддаются численной оценке. Часто в инструкциях по эксплуатации машин для решения вопроса о возможности дальнейшей работы детали указывается: «недопустимы риски на поверхности» или «не должно быть местных забоин и вмятин». Такие указания дают широкий простор для субъективного суждения о работоспособности изделия и приводят, как правило, к повышенным ремонтным расходам. Для локальных видов также необходима численная оценка степени повреждения, по которой можно судить о близости изделия к его предельному состоянию.




Рекомендуем ознакомиться:
Вычислительные процедуры
Вызывающих изменение
Вызывающих образование
Вызывающим разрушение
Вызванный деформацией
Вызванные погрешностями
Вызванное действием
Вызванного изменением
Вязкостные характеристики
Вязкостно температурными
Вязкоупругие характеристики
Вычислительных комплексов
Важнейшей особенностью
Важнейшие особенности
Важнейших экономических
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки