Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Вследствие упругости



Относительно влияния состава стали следует отметить, что увеличение содержания углерода в стали вследствие упрочнения приводит к снижению обрабатываемости. Тем не менее очень низкоуглеродистые стали и техническое железо обрабатывается плохо, вследствие их большой вязкости и пластичности, кроме того, при их обработке получается длинная трудноудаляемая стружка.

Максимальную температуру нагрева, т. е. температуру начала горячей обработки давлением, следует назначать такой, чтобы не было пережога и перегрева. В процессе обработки нагретый металл обычно остывает, соприкасаясь с более холодным инструментом и окружающей средой. Заканчивать горячую обработку давлением следует также при вполне определенной температуре, ниже которой пластичность вследствие упрочнения (рекристаллизация не успевает произойти) падает и в изделии возможно образование трещин. Но при высоких температурах заканчивать деформирование нецелесообразно (особенно для сплавов, не имеющих фазовых превращений). В этом случае после деформирования зерна успевают вырасти и получается крупнозернистая структура, характеризующаяся низкими механическими свойствами.

1\чьбу на пинтах нарезают или накатывают. Накатывание обеспечивает более высокую прочность вследствие упрочнения поверхностного слоя, создания остаточных напряжений сжатия и неперерезания волокон. При нарезании резьбы затупив шимея инструментом на поверхности впадин могуч4 образовываться мелкие надрывы, способствующие возникновению уста.'юстных трещин. Резьбу крупного тага рекомендуется обкатывать после нарезки.

модифицированного твердосплавного инструмента. В этом темпера-турно-скоростном диапазоне интенсивность изнашивания инструментального материала, определяемая адгезионными и диффузионными процессами, после лазерной обработки снижается. Это подтверждается дискретным характером взаимодействия модифицированного инструментального материала с обрабатываемым, а также топологией контактных площадок. Модификация снижает интенсивность процессов схватывания, изменяет морфологию износа контактных поверхностей твердого сплава, обеспечивая более равномерное изнашивание без микросколов и выкрашиваний. В условиях повышенных скоростей резания, когда основным фактором, определяющим износостойкость инструментальных материалов, являются диффузионные процессы, лазерная модификация вследствие упрочнения кобальтовой фазы препятствует диффузии железа из обрабатываемого материала в твердый сплав и предотвращает охрупчивание связки. Следует отметить, что элементный характер стружкообразования и связанное с ним циклическое нагружение режущего инструмента негативно влияют на износостойкость модифицированных лазерными пучками твердых сплавов.

ции e=const нет простого аналитического решения для кривой деформирования. Численный расчет при различных значениях постоянной и скорости деформации свидетельствует о возрастании перенапряжений на начальном участке деформирования до максимума и последующем их снижении до минимальной величины, за которым следует повторное возрастание вследствие упрочнения (см. рис. 12, в). С понижением скорости деформации максимум напряжений смещается в область меньших де-

*•) Имеются и исключения. Например, в бронзах и некоторых алюминиевых сплавах отрыв происходит после больших пластических деформаций. Объяснить это можно так: первоначально возникают пластические деформации, затормаживаемые и прекращаемые дефектами и поворотами пачек скольжения и (или) двойникования в зернах; вследствие упрочнения при возрастании нагрузки уве-

В первом приближении проявление ползучести можно оценить сравнением предела текучести сттс с переменным (вследствие упрочнения) напряжением ОА (без учета временных процессов). Реологические процессы в корпусах типа I не проявляются (рис. 4.60) вследствие высокого сопротивления ползучести сплава при t = 610 °С; для корпусов типа II необходима оценка указанного эффекта.

В начальной стадии пластического деформирования наиболее интенсивно происходит перераспределение напряжений по сечению деталей, приводящее к увеличению несущей способности детали. По мере роста пластических деформаций, когда они в два-три раза превосходят деформации, соответствующие пределу текучести материала, процесс перераспределения напряжений ослабевает. Несущая способность детали повышается медленнее и в основном вследствие упрочнения материала. При отсутствии упрочнения нарастание деформаций существенно опережает рост нагрузки. Так как при указанном уровне пластических деформаций в зонах краевого эффекта они, как правило, охватывают все сечение детали, этот уровень является в данной работе исходным для проверки сходимости метода расчета. Как показали приведенные расчеты, сходимость предложенного метода является весьма быстрой. Как правило, достаточным оказывается выполнение четырех-пяти приближений. Время расчета при этом составляет для ЭВМ типа БЭСМ-6 несколько секунд. 214

где па — коэфициент напряжённого состояния, учитывающий влияние на удельное давление внешнего трения и натяжения; nv— коэфициент скорости, учитывающий влияние на удельное давление скорости прокатки; пн — коэфициент наклёпа, учитывающий повышение предела текучести при прокатке вследствие упрочнения прокатываемого металла.

Влияние частоты наложенных деформаций и, что не менее важно, скорости нагружения в условиях двухчастотного нагружения может быть проиллюстрировано на примере сопоставления рассмотренных выше результатов п экспериментальных данных, полученных при двухчастотном нагруженной этой же стали с формой циклов, представленной на рис. 4.19, в, когда частота низкочастотного нагружения (включая время выдержек), температура, а также уровни максимальных и высокочастотных напряжений оставались прежними, а частота а„2 составляла /2 = 30 Гц. что соответствовало соотношению частот /2/Д = 18 000. Характер развития деформаций в этих условиях показан на рис. 4.27. Важно, что их кинетика в основном подобна изменению соответствующих характеристик при нагружении с меньшим соотношением частот (см. рис. 4.25). Как и в последнем случае, полная ширина петли гистерезиса б^ после уменьшения в первые циклы нагружения вследствие упрочнения материала в дальнейшем несколько стабилизируется, а затем начинает увеличиваться (рис. 4.27, и), но интенсивность разупрочнения материала в этом случае существенно ниже, чем при нагружении с/2/Д = 80. Активная же составляющая циклической пластической деформации 6^ вплоть до разрушения остается на установившемся уровне для всех исследованных напряжений. В связи с этим увеличение с числом циклов полной ширины петли следует отнести за счет деформации циклической ползучести е^\ которая также непрерывно увеличивается после начальной стадии пагружения (рис. 4.27, б). Если сравнить ее абсолютные значения для одних и тех же уровней максимальных напряжений двухчастотного нагружения при УУ/1 = 18 000 и /2//! = 80 с нагруженном по трапецеидальной форме циклов, принимая во внимание при этом закономерности взаимосвязи диаграмм циклического деформирования по про-

Заканчивать горячую обработку давлением следует также при вполне определенной температуре, ниже которой пластичность вследствие упрочнения (рекристаллизация не успевает произойти) падает и в изделии возможно образование трещин. Но при высоких температурах заканчивать деформирование нецелесообразно, особенно для сплавов, не имеющих фазовых превращений. В этом случае после деформирования зерна успевают вырасти и получается крупнозернистая структура, характеризующаяся низкими механическими свойствами.

Скорость движения толкателя на обеих фазах постоянна. Аналоги ускорений s
На рпс. 26.41 показана динамическая модель кулачкового механизма с упругим толкателем. Упругость кулачкового вала не принимается ао внимание, т. е. рассматривается механизм, в котором жесткость вала значительно больше жесткости толкателя. Масса толкателя иг считается сосредоточенной в одной точка (верхнем конце толкателя). Действие сил упругости толкателя представлено пружиной а, не имеющей массы и помлчцрп'.шй между массой т и кулачком. На массу in действует внешняя сила F. Нижний конец толкателя (пружиня) движется в контакте с кулачком, т. е. перемещение нижнего конца толкателя s, отсчитываемое от наинизшего положения, определяется профилем кулачка. Перемещение верхнего конца толкателя у вследствие упругости толкателя отличается от перемещения s.

страненной. При -/том можно отметить следующие основные преимущества ременной передачи: возможность передачи движения на значительно? расстояние (до 15 м и более); плавность н бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях; предохранение механизмов от резких колебаний нагрузки вследствие упругости ремня; предохранение механизмов от перегрузки за счет

Исследованиями [271 установлено, что при отсутствии резонансных колебаний вредное влияние пульсации скоростей v^ и иг в значительной степени снижается вследствие упругости и провисания

Широкое применение получили пружинные шайбы (рис. 7.13, ж) (ГОСТ 6402— 70), обеспечивающие вследствие упругости шайбы сохранение сил трения в резьбе при колебаниях осевой нагрузки; кроме того, эти шайбы повышают сцепление между гайкой, шайбой и деталью благодаря врезанию острых срезов шайбы в торец гайки и плоскость детали. Пружинные шайбы изготовляют различными для правой и левой резьбы. Недостатком этих шайб является некоторое смещение нагрузки. Этого недостатка лишены осесим-метричные пружинные шайбы с несколь-

В пневмоприводах сколько-нибудь значительные перегрузки невозможны вследствие упругости рабочей среды — воздуха.

1. Стопорение дополнительным трением в резьбе (рис. 3.31) с помощью контргаек, пружинных шайб, самотормозящих гаек и т. п. При стопорении контргайкой (а) дополнительное трение в резьбе возникает от действия упругих сил растянутого участка болта между гайками. Пружинные шайбы / (б) создают дополнительное трение вследствие упругости шайбы и повышают сцепление гайки с деталью ввиду того, что острые края шайбы врезаются в деталь и гайку навстречу отвинчиванию. Самотормозящие гайки повышают трение в резьбе: обжатием верхней прорезной наружной части «короны» (в); упругой деформацией нейлонового кольца 2 (г) и др. Применение этих гаек уменьшает число случаев самоотвинчивания в 6. . .8 раз, в то время как использование гайки с пружинной шайбой дает лишь двукратное уменьшение числа случаев самоотвинчивания.

большие расстояния (до 15 м); смягчение толчков и ударов вследствие упругости ремня; предохранение механизмов от перегрузки вследствие возможного проскальзывания ремня; возможность бесступенчатого регулирования скорости. Недостатки: большие габариты; некоторое непостоянство передаточного числа из-за неизбежного упругого скольжения ремня; повышенные нагрузки на валы и подшипники от натяжения ремня; низкая долговечность ремней (1000...5000 ч).

разность ее применения. Для оценки ременной передачи сравним ее с зубчатой передачей как наиболее распространенной. Можно отметить следующие основные достоинства ременной передачи: возможность передачи движения на значительное расстояние (до 15 м и более); плавность и бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях; предохранение механизмов от резких колебаний нагрузки вследствие упругости ремня; предохранение механизмов от перегрузки за счет возможного проскальзывания ремня (ременная передача устраняет необходимость применения специальных предохранительных муфт); простота конструкции и эксплуатации.

Скорость движения толкателя на обеих фазах постоянна. Аналоги ускорений sz на обеих фазах равны нулю, кроме положений a, ft, с и d, где функция sa = s? (фг) имеет раз- а рывы. В этих положениях теоретически ускорения выходного звена являются равными бесконечности. Это вызывает появление в механизме так называемых жестких ударов, при которых силы, действующие на звенья механизма, теоретически достигают бесконечности. Практически ускорения в указанных положениях не равны бесконечности, потому что обычно действительным (центровым) профилем кулачка является профиль, построенный как эквидистантная кривая к теоретическому профилю, что вызывает изменение в этих положениях не только теоретического ускорения, но и скорости. Кроме того, если даже толкатель не имеет ролика, а оканчивается острием, то вследствие упругости звеньев кулачкового механизма ускорения az не могут получаться равными бесконечности благодаря амортизирующему эффекту упругих звеньев. Несмотря на это, все же в указанных положениях мы можем получить размыкание элементов высшей пары и соударение толкателя и кулачка. Поэтому обычно линейным ЗЗКОНОМ ПОЛЬ-зуются только на части фаз подъема или опускания и в закон движения вводятся переходные кривые, позволяющие осуществлять плавный переход на участках сопряжения двух линейных законов движения. Такими переходными кривыми могут быть

На рис. 26.41 показана динамическая модель кулачкового механизма с упругим толкателем. Упругость кулачкового вала не принимается во внимание, т. е. рассматривается механизм, в котором жесткость вала значительно больше жесткости толкателя. Масса толкателя т считается сосредоточенной в одной точке (верхнем конце толкателя). Действие сил упругости толкателя представлено пружиной а, не имеющей массы и помещенной между массой т и кулачком. На массу т действует внешняя сила F. Нижний конец толкателя (пружина) движется в контакте с кулачком, т. е. перемещение нижнего конца толкателя s, отсчитываемое от наинизшего положения, определяется профилем кулачка. Перемещение верхнего конца толкателя у вследствие упругости толкателя отличается от перемещения s.




Рекомендуем ознакомиться:
Выбираются соответственно
Внезапного разрушения
Внезапном расширении
Внутренняя цилиндрическая
Внутренняя температура
Внутренней информации
Внутренней обработки
Внутренней поверхностях
Внутренней расточкой
Внутренней звездочкой
Внутреннее охлаждение
Выборочной проверкой
Внутреннее состояние
Внутреннего диаметров
Внутреннего облучения
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки