Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Взаимодействия излучения



Теперь вернемся к случаю взаимодействия движущихся зарядов (рис. 42).

Дальнейшее совершенствование автомобильного парка предполагает последовательное расширение теоретических и экспериментальных исследований и выполнение ряда значительных конструкторских и технологических разработок. Результаты многих исследовательских работ и многие новые инженерные решения воплощены в конструкциях автомобилей, вновь осваиваемых в серийном и массовом производстве. Отраслевые научно-исследовательские институты, специализированные проектно-конструкторские организации и заводские лаборатории располагают квалифицированными кадрами исследователей и конструкторов и совершенным оборудованием. В 1966 г. в Дмитровском районе под Москвой закончено строительство первого в СССР и одного из крупнейших в мире автомобильного полигона с 14-километровой кольцевой цементобетонной дорогой для испытания автомобилей на скоростных режимах, с 18,5-километровой кольцевой грунтовой дорогой переменного профиля, включая труднопроходимые участки, со специальными испытательными дорогами для динамометрических исследований, определения взаимодействия движущихся автомобилей с различными дорожными покрытиями и т. д. Все это обеспечивает получение эффективных решений кардинальных проблем безопасности движения с большими скоростями, применения новых конструкционных материалов, нейтрализации выбрасываемых в атмосферу выхлопных газов и использования новых источников энергии, разработки легкосменных узлов, облегчающих техническое обслуживание и ремонт автомобилей, повышения экономичности автомобилей и других проблем, характерных для основных направлений развития автомобилестроения и автомобильного транспорта в ближайший период.

системы отсчета, обусловленная центростремительным переносным ускорением); коэрцитивная — напряженность магнитного поля, в котором ферромагнитный образец, первоначально намагниченный до насыщения, полностью размагничивается; Лоренца — результирующая сила, действующая на движущуюся частицу с электрическим зарядом одновременно и магнитного и электрического полей; магнитного взаимодействия движущихся зарядов заключается во взаимном воздействии магнитных полей, образующихся движущимися точечными зарядами; магнитодвижущая — произведение силы тока в соленоиде на число его витков]

4.3. Механизм взаимодействия движущихся капель с перегретой стенкой

4.3. Механизм взаимодействия движущихся капель с перегретой стенкой 155

4.3. Механизм взаимодействия движущихся капель с перегретой стенкой 157

4.3. Механизм взаимодействия движущихся капель с перегретой стенкой 159

4.3. Механизм взаимодействия движущихся капель с перегретой стенкой......................154

Средний размер частиц второй фазы и расстояние между ними. Определяет степень взаимодействия движущихся дислокаций с частицами (барьерный эффект), степень деформационного упрочнения. С размером частиц также связаны предел текучести и твердость, физические свойства (см. 1.11).

Средний размер частиц второй фазы и расстояние между ними. Определяет степень взаимодействия движущихся дислокаций с частицами (барьерный эффект), степень деформационного упрочнения. С размером частиц также связаны предел текучести и твердость, фн-знческие свойства (см. 1.11).

При нисходящем течении пленки при взаимодействии спутного газового потока, по данным Б. Г. Ганчева, обнаруживаются три области изменения сопротивления, зависящих от плотности орошения, расстояния от входа в трубу и ее диаметра. При этом первоначально имеет место кольцевое течение без взаимодействия движущихся фаз. В этой области коэффициент гидравлического сопротивления определяется по формуле [11]

3. Оптический резонатор, который служит для осуществления взаимодействия излучения с рабочим веществом и в котором происходит отбор энергии от ансамбля генерирующих излучение частиц.

Эффективность резки может быть значительно повышена в результате введения в зону резки активного газа, например кислорода. Экзотермическая реакция между разрезаемым материалом и кислородом значительно увеличивает выделение энергии в месте взаимодействия излучения с материалом. На этом принципе основан процесс газолазерной резки (ГЛР). Кислород в этом процессе осуществляет следующие функции:

науки и техники, охватывающая изучение и разработку методов и средств генераций, усиления и преобразования частоты электромагн. колебаний радио- и оптич. диапазонов на основе использования явления индуцированного излучения или нелинейного взаимодействия излучения с в-вом. К приборам и устройствам К.э. относятся молекулярные генераторы, квантовые усилители, лазеры, квантовые стандарты частоты, лазерные гироскопы, квантовые магнитометры и др.

Физической основой нейтронной радиографии является зависимость сечения взаимодействия излучения с веществом от характеристик вещества и прежде всего от его атомного номера и массового числа. В отличие, например, от рентгеновского и ?-излу-чений эта зависимость для нейтронов (преимущественно низких энергий) выражена более сильно и имеет до некоторой степени противоположный характер (рис. 40). В связи с тем, что эффективные сечения взаимодействия о нейтронов с ядрами веществ увеличиваются с понижением энергии нейтронов (рис. 41), в радиационной дефектоскопии нашли преимущественное использование тепловые и надтепловые нейтроны. Из анализа кривых следует, что нейтроны вполне целесообразно использовать при дефектоскопии таких веществ, как марганец, бор, кадмий, водород и др. В этих веществах наблюдается резкое изменение о в зависимости от энергии, что позволяет хорошо выявлять дефекты.

Если в предшествующем изложении речь шла о таких процессах взаимодействия излучения с веществом, физическая и биофизическая природа .которых относительно хорошо изучена, то при рассмотрении реакций с участием свободных радикалов приходится сталкиваться со значительно менее исследованной областью. .

процесса была показана еще в первых технологических исследованиях при изучении явлений взаимодействия излучения оптических квантовых генераторов (ОКГ) с металлами и сплавами [12,25, 33]. В результате использования лазерного луча для упрочнения материалов появляется возможность разработки новых принципов конструирования деталей машин и узлов, внесения коренных изменений в технологию изготовления изделий. При таком способе упрочнения можно изменить свойства различных участков детали, изготовленной из сравнительно недорогостоящего конструкционного материала, и получить сплавы с уникальными характеристиками прочности, износостойкости и коррозионной стойкости. Создание совершенного лазерного оборудования различных типов позволяет в широких пределах реализовать возможности нового технологического метода, полностью автоматизировать технологический процесс, включить его в интегральную систему высокоэффективного производства, основанного на комплексном использовании прогрессивных технологических процессов, автоматики и вычислительной техники.

До настоящего времени в литературе появлялись лишь разрозненные данные об упрочнении материалов лазерным излучением, а издания, в котором обобщались бы результаты исследований по данному методу обработки, показывались его технологические особенности, возможности реализации этого метода, примеры его практического применения, не было. В предлагаемой вниманию читателей книге сделана попытка восполнить этот пробел. Авторы в общих чертах представили физику процесса взаимодействия излучения ОКГ с веществом в разных режимах, конструктивные особенности различных типов лазеров, характеристики лазерного излучения и другие специальные вопросы, уделив особое внимание технологическому аспекту проблемы, примерам промышленного использования новой технологии. В книге представлены новые результаты исследования упрочнения материалов с помощью непрерывного излучения С02-лазеров. Основой для написания книги послужили материалы исследований, выполненных авторами в лаборатории лазерной технологии кафедры инструментального производства Киевского политехнического института. Кроме того, в ней использованы результаты работ отечественных и зарубежных исследователей в области лазерной техники и технологии, опубликованные в течение последних лет. Авторы приносят благодарность сотрудникам лаборатории лазерной технологии КПИ и других организаций, принимавших участие в выполнении ряда исследований.

В зависимости от интенсивности и длительности воздействия лазерного излучения различают следующие стадии взаимодействия излучения с материалом при лазерной обработке: подвод лазерного излучения к материалу, поглощение светового потока и передача его энергии твердому телу, нагрев материала без видимого разрушения, расплавление материала, испарение и вымывание продуктов разрушения, остывание материала после окончания лазерного воздействия.

Температура—один из основных факторов, влияющих на •степень радиационных нарушений в материалах. Бомбардировка нейтронами приводит к образованию точечных дефектов, дальнейшая судьба которых определяется температурными условиями. Миграция дефектов к местам стоков, аннигиляция парных дефектов Френкеля, образование комплексов и другие диффузионные процессы связаны с температурой. Число смещенных атомов в момент взаимодействия излучения с вещест-•вом при низкой и высокой температуре одинаково; однако, так как подвижность дефектов при высокой температуре больше, •они скорее аннигилируют. Это приводит к уменьшению концентрации дефектов, а следовательно, к меньшему изменению свойств при облучении.

Как было установлено в экспериментах, механизм химической реакции под действием излучения значительно' меняется. Взаимодействие между молекулами дополняется или полностью заменяется при интенсивном излучении взаимодействием атомов, радикалов и ионов с молекулами и друг с другом. Скорость радиационно-химической реакции зависит не только от концентраций взаимодействующих веществ и температуры,, но и от параметров излучения, а также от характера взаимодействия излучения с молекулами этих веществ и кинетических параметров различных вторичных процессов.

Любой реальный процесс взаимодействия излучения с веществом так же, как и любой эксперимент по рассеянию, носит характер взаимодействия пучка частиц о большим числом атомов мишени. Эго требует статистического подхода при экспериментальном и теоретическом изучении возникающих явлений. Основой такого подхода должны служить вероятность рассеяния первичных частиц на определенный угол и вероятность выбивания ПВА в данном направлении. Однако по традиции, сложившейся в те времена, когда основной задачей являлась задача определения из экспериментов по рассеянию эффективных размеров ядер мишени, вместо вероятности любого события в атомной физике используют прямо пропорциональную ей величину — эффективное поперечное сечение данного события ст, которое определяется следующим образом:




Рекомендуем ознакомиться:
Внутренним зацеплениями
Внутреннюю температуру
Внутриканальная сепарация
Внутрикотловых процессов
Внутрипакетных колебаний
Внутризаводского планирования
Выбранной доверительной
Водогрейной котельной
Водоохлаждаемыми реакторами
Водородные расслоения
Водородным охрупчиванием
Водородной деполяризацией
Водородное охрупчивание
Водородного охлаждения
Водородного растрескивания
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки