Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Взаимодействие излучения



b) при значениях плотности мощности, когда взаимодействие источника с материалом сопровождается формированием глубокого канала проплавления, испарением и выбросом части металла из зоны расплава, для определения Т]т следует использовать модель быстроуглубляющегоея в полубесконечное тело плоского источника.

Исследованию связанных колебаний в неавтономных автоколебательных системах посвящено много работ: [1, 2] и др. В этих работах не учитывается динамическое взаимодействие источника энергии и колебательной системы. Связанные колебания в системе с ограниченным возбуждением рассмотрены в [3, 4]. Система, изученная в этих работах, характеризуется тем, что автоколебательный механизм возбуждения колебаний и периодическое воздействие зависят от свойств одного и того же источника энергии (автономная система), обеспечивающего функционирование системы. Следует отметить, что интересным является также случай, когда имеет место независимость этих двух механизмов возбуждения колебаний от свойств одного и того же источника энергии. В данном случае автоколебательная система с источником энергии оказывается под воздействием периодической силы, явно зависящей от времени, и уравнения, описывающие эту систему, являются неавтономными. Заметим, что подобную систему условно можно называть системой, взаимодействующей с двумя источниками энергии, в которой один из источников является неидеальным, другой — идеальным. Действительно, если периодическая сила генерировалась бы некоторым вторым источником энергии, имеющим ограниченную мощность, то такое название было бы вполне адекватным. Тогда колебания, происходящие в указанной системе, оказались бы зависящими также от свойств источника, генерирующего периодическую силу, и система, превращаясь в автономную, описывалась бы тремя уравнениями вместо двух. Чтобы не усложнять задачу, на данном этапе мы моделировали неавтономную систему, описываемую уравнениями

Управляемая машина представляет собой соединение трех частей: источника энергии (двигателя), механической системы и системы управления движением. До недавнего времени можно было при исследовании колебательных явлений, происходящих в машинах, не учитывать динамическое взаимодействие этих частей машины. Динамическая независимость двигателя, механической части и системы управления обусловливалась прежде всего существенным различием их характерных постоянных времени: собственные частоты механической системы располагались обычно за частотой среза системы управления, постоянная времени двигателя значительно превышала наибольший период свободных колебаний. В этих условиях только при прохождении через резонанс в процессе разгона и выбега проявлялось в какой-то мере взаимодействие источника энергии с механической системой, связанное с резким увеличением диссипации энергии на резонансных режимах; в остальном же анализ и синтез функциональных частей машины могли проводиться независимо.

Исследованию связанных колебаний в неавтономных автоколебательных системах посвящено много работ: [1, 2] и др. В этих работах не учитывается динамическое взаимодействие источника энергии и колебательной системы. Связанные колебания в системе с ограниченным возбуждением рассмотрены в [3, 4]. Система, изученная в этих работах, характеризуется тем, что автоколебательный механизм возбуждения колебаний и периодическое воздействие зависят от свойств одного и того же источника энергии (автономная система), обеспечивающего функционирование системы. Следует отметить, что интересным является также случай, когда имеет место независимость этих двух механизмов возбуждения колебаний от свойств одного и того же источника энергии. В данном случае автоколебательная система с источником энергии оказывается под воздействием периодической силы, явно зависящей от времени, и уравнения, описывающие эту систему, являются неавтономными. Заметим, что подобную систему условно можно называть системой, взаимодействующей с двумя источниками энергии, в которой один из источников является неидеальным, другой — идеальным. Действительно, если периодическая сила генерировалась бы некоторым вторым источником энергии, имеющим ограниченную мощность, то такое название было бы вполне адекватным. Тогда колебания, происходящие в указанной системе, оказались бы зависящими также от свойств источника, генерирующего периодическую силу, и система, превращаясь в автономную, описывалась бы тремя уравнениями вместо двух. Чтобы не усложнять задачу, на данном этапе мы моделировали неавтономную систему, описываемую уравнениями

Рассматривается взаимодействие источника энергии ограниченной мощности с колебательной системой с одной степенью свободы при силовом и кинематическом способах возбуждения колебаний. Для анализа предлагается использовать метод комплексного сопротивления и электрические аналоги колебательных систем.

Глава VII. Взаимодействие источника возбуждения с колебательной системой (К- В. Фролов, К- Ш. Ходжаев)................ 191

2. Взаимодействие источника возбуждения с линейной одномассной системой ............................... 192

3 Взаимодействие источника возбуждения с нелинейными колебательными системами......................... 199

ВЗАИМОДЕЙСТВИЕ ИСТОЧНИКА ВОЗБУЖДЕНИЯ С КОЛЕБАТЕЛЬНОЙ СИСТЕМОЙ

2. ВЗАИМОДЕЙСТВИЕ ИСТОЧНИКА ВОЗБУЖДЕНИЯ С ЛИНЕЙНОЙ ОДНОМАССНОЙ СИСТЕМОЙ

3. ВЗАИМОДЕЙСТВИЕ ИСТОЧНИКА ВОЗБУЖДЕНИЯ С НЕЛИНЕЙНЫМИ КОЛЕБАТЕЛЬНЫМИ СИСТЕМАМИ

Взаимодействие источника энергии с автоколебательной системой с сухнм трением изучил В. Ф. Петров [26]. Он показал, что в рассматриваемой системе взаимодействие проявляется, когда отношение частоты вибратора к собственной частоте системы близко к целому числу. Были найдены области синхронизации автоколебаний; эти области расширяются при увеличении частоты вибратора и ие перекрываются ввиду ограниченности амплитуды возбуждающей силы.

Заряженные частицы (электроны, протоны, продукты-деления и т. д.) взаимодействуют с частицами вещества, главным образом с элек-тронами, окружающими ядра атомов. Если частицы излучения несут достаточно большую энергию, каждое,такое взаимодействие будет приводить к отрыву электрона от атома и образованию положительно заряженного иона. Для того чтобы это произошло, необходимо, чтобы энергия налетающей частицы превышала энергию связи электрона в атоме. Значение энергии связи электрона меняется в очень широких пределах:" от нескольких электрон-вольт для валентных электронов до многих тысяч электрон-вольт для электронов k-u оболочки тяжелых элементов. В данной главе прежде всего рассмотрим взаимодействие излучения с живой тканью, которую можно представить как смесь атомов легких элементов (табл. 14.2). Подобный подход может быть применен .и к любому другому типу вещества.

Действие облучения на материалы, как правило, приводит тс значительным изменениям свойств этих материалов, к 'изменениям физических и химических процессов, происходящих в веществе, а также к новым качественным состояниям вещества. Изменения эти связаны не только с дозой облучения, но и с целым рядом ускоряющих или замедляющих факторов. Следовательно, чтобы характеризовать условия облучения, необходимо кратко рассмотреть общие вопросы, связанные с воздействием излучения на твердые тела. Взаимодействие излучения с твердыми телами приводит к структурным нарушениям кристаллической решетки, в результате физико-механические свойства вещества изменяются. В зависимости от энергии и типа излучения в материалах наблюдаются следующие явления: иони-

3. Оптический резонатор, в котором имеет место достаточное взаимодействие излучения с веществом и осуществляется отбор энергии от ансамбля молекул.

Поскольку в процессе обработки материалов происходит взаимодействие излучения лазера с веществом, очень важным вопросом является выбор параметров как первого, так и второго. При использовании лазера не только пространственная когерентность и мощность излучения играют определяющую роль, но и генерируемая длина волны, которая должна рассматриваться в сочетании с поглощательной способностью обрабатываемого материала. Требуется определенный режим работы лазера для того, чтобы получить эффекты нагревания, плавления или испарения при имеющемся сочетании лазер—материал. Существенное влияние на диаметр лазерного пятна, создаваемого оптической системой, оказывает модовый состав излучения лазера.

а) Физические основы взаимодействия излучения и вещества. Наиболее простым случаем является распространение электромагнитной энергии в вакууме. Как уже упоминалось, излучение всех частот распространяется в вакууме с постоянной максимальной скоростью с. При этом всякое взаимодействие излучения с вакуумом отсутствует, вследствие чего сохраняются неизменным» как первоначальная энергия электромагнитной волны (фотона), так и ее направление движения.

Дело обстоит гораздо сложнее, когда излучение распространяется в материальной среде. С точки зрения электронной теории взаимодействие излучения и вещества заключается в воздействии электромагнитной волны на электрические заряды, входящие в состав атомов вещества. Это воздействие сводится к возбуждению колебаний электронов в такт с колебаниями проходящей через среду электромагнитной волны, в результате чего возбужденные колебания зарядов приводят к испусканию вторичных электромагнитных волн. Для отдельного изолированного атома излучение вторичных волн той же частоты, что и падающая волна, описывается коси-нусоидалышй диаграммой испускания по различным направлениям [Л. 15]. Вторичные волны, испускаемые соседними атомами, оказываются когерентными и интерферируют друг с другом. В результате такой интерференции излучение среды в стороны почти полностью нивелируется, а взаимная интерференция 'первичной и вторичных волн, приводит к возникновению результирующей волны, которая распространяется в первоначальном направлении, но с фазовой скоростью, меньшей, чем скорость излучения в вакууме. Таким образом, следствием взаимодействия излучения с атомами и молекулами вещества является прежде всего уменьшение скорости распространения излучения в реальной среде по сравнению с вакуумом. Если при этом скорость распространения излучения в среде сч меняется с частотой, то будет происходить так называемая дисперсия электромагнитных волн в данной среде.

Взаимодействие излучения с материальной средой вследствие наличия импульса у фотонов приводит к механическим напряжениям. Для оценки последних необходимо путем интегрирования (1-90) по всем направлениям определить нормальные и касательные напряжения, возникающие на элементарных площадках, ориентированных нормально к осям координат. Выполняя эту операцию получаем выражение спектрального тензора напряжений излучения Pv, имеющего компоненты:

2. При наличии в излучающей системе объемных зон с ослабляющей средой применение зональных методов заметно усложняется. В этом случае взаимодействие излучения с объемом зоны рассматривается как взаимодействие с поверхностью этого объема. Объемное излучение среды условно заменяется излучением поверхности объемной зоны, рассеяние рассматривается как диффузное отражение с поверхности, а поглощение в объеме — как поглощение той же поверхностью. Естественно, что такая условная замена приводит к дополнительным неясностям и неточностям.

2. При наличии в излучающей системе объемных зон с ослабляющей средой применение зональных .методов еще более осложняется. В этом случае взаимодействие излучения с объемом зоны обычно рассматривается как взаимодействие с (Поверхностью этого объема. Объемное излучение среды условно заменяется излучением поверхности объемной зоны, рассеяние заменяется отражением с поверхности, а поглощение в объеме —поглощением поверхности. Однако процесс такой условной замены приводит к дополнительным неточностям, а его выполнение до сих пор не разработано в полной мере.

Рис. 4.8. Взаимодействие излучения с пластиной

Радиационный контроль качества промышленной продукции является сейчас первым по объему применения в народном хозяйстве. Направления его развития определяются как общими тенденциями развития измерительной техники — применение новых первичных измерительных преобразователей и индикаторов, оснащение оборудования вычислительной техникой и микроэлектронными элементами, изменениями в специальных блоках, характерных для этого вида неразрушающего контроля. Здесь в первую очередь следует отметить существенное увеличение числа типов источников излучения, отличающихся по виду излучения и по его энергетическому спектру. Особенно разнообразное взаимодействие излучения с контролируемым объектом имеют радиоизотопные источники, которые только начинают использоваться в неразру-шающем контроле. Причем диапазон энергии кванта излучения источника расширяется как в сторону больших, так и в сторону малых значений энергии, что важно при контроле толстых или тонких слоев, изделий, из материалов с сильным или слабым поглощением излучения. Например, в настоящее время проявляется повышенный интерес к малоэнергетическому тормозному излучению, позволяющему производить контроль качества пластмасс, композиционных материалов или тонких металлических слоев по вторичному излучению. При создании оборудования на современной элементной базе существенно снижается повышенная опасность ионизирующих излучений, что дает возможность работать при пониженных интенсивностях источника излучения. Большие перспективы в этой части имеют также автоматизация и роботизация проведения контроля качества промышленной продукции, делающие совершенно безопасными условия труда персонала и устраняющие вредное воздействие на окружающую среду.




Рекомендуем ознакомиться:
Внутрикотловой обработки
Внутрипорового теплообмена
Внутризеренного скольжения
Водогрейные трубопроводы
Водоохлаждаемых реакторах
Водорастворимых органических
Выбранной плоскости
Водородная усталость
Водородной усталости
Водородного электрода
Водородного перенапряжения
Водородном охрупчивании
Водоснабжения электростанции
Водоугольных суспензий
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки