Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Высокопрочных металлических



Истоки этого направления начинаются с работ А. Гриффитса (20-е годы), который показал, что разрушение высокопрочных материалов обусловлено имеющимися в теле трещинами или трещи-ноподобными дефектами, развитие которых и определяет весь процесс разрушения. Как указывалось выше (с. 72), концентрация напряжений в устье дефекта прямо пропорциональна корню квадратному из отношения его длины к радиусу закругления. Если напряжение в устье дефекта достигнет теоретической прочности, то произойдет хрупкое разрушение и трещина увеличится по длине. Такое местное разрушение в устье трещины может перейти в самопроизвольное, если уменьшение упругой энергии, обусловленное приростом трещины, будет превышать работу, необходимую для образования новых поверхностей, т. е. поверхностная энергия должна быть меньше высвобождающейся упругой энергии.

При испытании высокопрочных материалов (<т„>150—250 кгс/мм2) требуется тщательность в выполнении испытания, подготовке машины для испытания и изготовлении образцов.

Вязкость разрушения высокопрочных материалов. Пер. с англ. М., «Металлургия». 1973. 304 с. с ил.

Хотя достигнутая в лабораторных опытах прочность стали (а„ = 300 кгс/ /мм2), все же достигнутый уровень прочности составляет лишь часть от теоретической. Возможности создания высокопрочных материалов (точнее, материал + технологический процесс упрочнения) еще достаточно широки. По некоторым прогнозам, в будущем промышленность будет располагать сплавами на основе железа с ст0,2 = 280 «гс/мм2 и ав = 320 кгс/мм2.

Достигнутый к настоящему времени уровень развития механики разрушения позволяет эффективно решать задачи, связанные с определением трещиностойкости высокопрочных материалов. Однако, применительно к сталям средней и низкой прочности с ств = 500-600 Н/мм2, являющимся основным конструкционным материалом в газо-нефгехимическом машиностроении, использовании положений линейной механики разрушения оказывается в ряде случаев необоснованным из-за значительной пластической деформации в этих материалах в области неупругого деформирования вблизи контура трещины. Отмеченное обстоятельство предопределяется типом напряженного состояния, зависящим также от толщины металла.

При выполнении кольцевых швов тонкостенных сосудов из материалов, мало чувствительных к концентрации напряжений, используют остающиеся подкладные кольца, которые облегчают центровку кромок и их одностороннюю сварку. Для ряда высокопрочных материалов такой прием оказывается неприемлемым. В этом

Появление высокопрочных сталей ставит с особой остротой вопросы жесткости1. Модуль упругости сталей имеет устойчивую величину и мало зависит от термообработки и содержания (в обычных количествах) легирующих элементов. Так как упругие деформации пропорциональны отношению напряжений к модулю упругости, то с повышением величины напряжений (а в этом и состоит смысл применения высокопрочных материалов) величина деформаций возрастает пропорционально напряжениям; жесткость падает обратно пропорционально.

Это справедливо в предположении, что длина деталей не изменяется, как это и бывает в большинстве случаев. Линейные размеры конструкции обычно заданы условиями работы машины. У генераторов и преобразователей энергии эти размеры зависят от рабочего объема и параметров рабочего процесса (например, у двигателей внутреннего сгорания — от размеров цилиндра зависящих, в свою очередь, от величины рабочего давления газов); у машин-орудий — от габаритов изделий, подвергаемых обработке на данной машине; в металлоконструкциях — от строительной длины и высоты сооружений. Во всех этих случаях применение высокопрочных материалов может влиять лишь на сечение, но не на длину деталей.

В машинах, линейные размеры которых зависят только от прочности материалов (например, редукторы), применение высокопрочных материалов позволяет наряду с уменьшением сечений уменьшить длину деталей и габариты конструкции в целом. В данном случае жесткость конструкции не снижается от применения высокопрочных материалов.

сводится к снижению напряжений, что скрадывает основное преимущество высокопрочных материалов; возможность повышения расчетных напряжений с соответствующим выигрышем в массе. Это преимущество удается реализовать лишь отчасти и при очень большом утонении стенок (до величины порядка 1—2 мм для обычных деталей в общем машиностроении), т. е. при переходе на оболочковые конструкции.

Материалы для пружин должны иметь высокие и стабильные во времени упругие свойства. Делать пружины из материалов низкой прочности нецелесообразно. Масса геометрически подобных пружин при заданной нагрузке и упругом перемещении обратно пропорциональна квадрату допускаемого напряжения. Это связано с тем. что пружины из менее прочных материалов в целях сохранения заданной жесткости приходится делать повышенных диаметров и, следовательно, витки их нагружены большими моментами, чем у пружин из более прочных материалов. Эффективность применения высокопрочных материалов для пружин связана также с меньшей концентрацией напряжений в пружинах, чем в других деталях, и с меньшими размерами сечений ниткой. Соотношение размеров витых пружин из разных материалов показано на рис. 20.2.

21. /i .'.;;<л У., l ,'i'in.,u ,('.>„. Испытания высокопрочных металлических мате-]1::л:к>]1 M.I тпкогть разрушения при плоской деформации/Пер, с англ. под Н'Л. Г). А. Дроздот'кого и L. M. .Морозова.— М.: Мир. 19/2,— 2'il> с.

3 - стадия циклического упрочнения (разупрочнение), которая завершается достижением линии необратимых повреждений (линии Френча). Стадия циклического упрочнения (когда при испытании с постоянной амплитудой деформации за цикл максимальное напряжение растет с увеличением числа циклов) наблюдается у пластичных металлов и сплавов, а стадия циклического разупрочнения (когда напряжение уменьшается с ростом числа циклов) у высокопрочных металлических материалов и на начальных стадиях усталости у металлических материалов, имеющих площадку текучести. Также, как и при статическом деформировании, на этой стадии наряду с процессами деформационного упрочнения наблюдается развитие повреждаемости в виде образования субмикротрещин (пунктирная линия СДЕ).

на, на сопротивление усталости также оказывает степень рекристаллизации. В высокопрочных металлических материалах часто определяющим структурным фактором является размер субзерна или одной из структурных составляющих.

Еще 10—15 лет назад казалась фантазией возможность получить металлы и сплавы с прочностью, в сотни раз превосходящей прочность существующих металлических материалов. Действительно, оба основных способа получения высокопрочных металлических материалов — легирование и термическая обработка, а также их сочетание — позволили повысить прочность машиностроительных материалов всего в 8—-10 раз. Эти успехи . явились результатом 50 лет напряженного труда ученых и инженеров. Конечно, это был довольно существенный шаг вперед, однако непрерывно возрастающие запросы техники требуют металлов и сплавов более высокой 'прочности. И машиностроительные материалы с необходимыми свойствами могут быть получены. Мы уже располагаем металлами действительно ультравысокой прочности. Известно, что прочность технического железа на разрыв составляет всего 25—30 кГ/мм2. Сравнительно недавно удалось получить монокристаллы железа прочностью до 1400 кГ/мм2. Правда, такая высокая прочность пока еще получена на объектах весьма .малых .размеров, но эти результаты не случайны, а являются закономерным следствием развития наших знаний о природе твердого тела. Успехи, достигнутые физикой твердого тела за последние годы, позволили разработать принципиально новые 'пути повышения прочности кристаллических материалов. При этом отнюдь не исключаются ранее оправдавшие себя методы получения высокопрочных материалов: разработка .композиций новых сплавов, их легирование и термическая обработка. Но даже у существующих материалов прочность можно повысить во много раз, если более полно использовать силы межатомных связей в кристалле. Задача за-.ключается в реализации этих скрытых резервов. Пути такой реализации предсказаны теорией дислокаций.

Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. ^Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более 'прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.

10. Brown W. F., Jr., Srawley J. E., Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP No. 410, Philadelphia, Pennsylvania, 1966; русский перевод: Браун У., Сроули Дж., Испытания высокопрочных металлических материалов на вязкость разрушения при плоской деформации, «Мир», М., 1972.

— Остаточная прочность некоторых слоистых композитов с концентраторами, под которой понимается статическая прочность, измеренная после усталостного нагружения, равна статической прочности до усталостного нагружения или выше ее. Это опять противоречит экспериментальным данным для высокопрочных металлических сплавов, у которых усталостное нагруже-ние приводит к росту трещин и неустойчивости процесса разрушения.

29. Браун У., Сроули Д. Испытания высокопрочных металлических материалов на вязкость разрушения при плоской деформации. М., «Мир», 1972. 246 с.

2. Браун У., Сроули Дж. Испытания высокопрочных металлических материалов на вязкость разрушения при плоской деформации: Пер. с англ. М.: Мир, 1972. 248 с.

1 Величина (Kic/Go.z)2 характеризует не критическую длину трещины при напряжении, равном Сто,а, в условиях плоской деформации, а лишь при напряжениях, значительно меньших Сто,2 [10, 11]. Для получения достоверных значений вязкости разрушения размеры образца должны быть больше определенной величины, кратной (Kic/ao,z)2. Для высокопрочных сталей коэффициент кратности равен 2,5 (Браун У., Сроули Дж. Испытания высокопрочных металлических материалов на вязкость разрушения при плоской деформации: Пер. с англ. М.: Мир, 1972. 246 с). Для алюминиевых и магниевых сплавов коэффициент кратности находится в пределах 1—4 (Микляев П. Г., Нешпор Г. С., Кудряшов В. Г. Кинетика разрушения. М.: Металлургия, 1979. 277 с.). Прим. пер.

К существенному недостатку наклепа мартенситной структуры относится возникновение весьма значительных остаточных напряжений, способных даже вызывать в отдельных случаях самопроизвольное разрушение. Методы комбинированного упрочнения были крупнейшим завоеванием в области изыскания путей повышения прочности стали и вообще металлических сплавов послевоенных лет, их теоретическая сущность и широкая эффективность в самых различных областях применения высокопрочных металлических сплавов заслуживают специального рассмотрения.




Рекомендуем ознакомиться:
Возможность практически
Возможность представления
Возможность приближенного
Возможность проявления
Возможность производить
Выдвигается требование
Возможность расширения
Возможность рассчитать
Возможность разложения
Возможность разработки
Возможность регулировать
Возможность сформулировать
Возможность сокращения
Возможность сопоставления
Возможность создавать
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки