Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Водородного перенапряжения



Еще одним объяснением исследуемого разрушения является концепция водородного охрупчивания металла, предполагающая, что растрескивание возникает в результате наводороживания стали. При этом источником водорода могут быть: сероводород, содержащийся в транспортируемом продукте или продуцируемый сульфатвосстанавливающими бактериями в грунте [64, 226]; углекислый газ, содержащийся в транспортируемом продукте; токи катодной защиты при потенциалах выше регламентированных значений. Однако при КР, как отмечалось выше, отсутствуют характерные внешние проявления водородного растрескивания, такие, как блистеринг и расслоение металла. Наводороживание металла вследствие образования сероводорода при растворении неметаллических включений сульфида марганца в лабораторных условиях возможно только в кислых средах на очень загрязненных сульфидами сталях, а в щелочных средах, как показано выше, при потенциалах, соответствующих регламентированным значениям режимов катодной защиты, эту включения химически инертны. Вместе с тем вышеизложенное не исключает возможности локального воздействия водорода, возникающего при электрохимическом растворении стали с водородной деполяризацией при коррозионных процессах в кислых средах (например, сероводородсодержа-щих).

Несущую способность прессовых соединений можно повысить также металлизацией и термодиффузионным насыщением (например, горячим цинкованием), которое в отличие от гальванических покрытий не вызывает водородного охрупчивания металла. Дальнейшего повышения несущей ело», собности можно достичь нанесением разнородных покрытий, например цинкового покрытия на одну поверхность и медного на другую. В результате взаимной диффузии атомов металлов можно ожидать образования в зоне контакта промежуточных структур более высокой прочноои, чем металлы однородных покрытий (например, сплавов типа латуней при сочетании цинкового и медного покрытий).

Другим объяснением исследуемого разрушения является концепция водородного охрупчивания металла, предполагающая, что растрескивание возникает в результате наводороживания стали. При этом источником водорода может быть сероводород, содержащийся л транспортируемом продукте или продуцируемый оульфатвооотанавлива-ющими бактериями в грунте; углекислый газ, содержащийся в транспортируемом продукте; токи катодной защиты при потенциалах выше регламентированных значений. Однако при КР, как отмечалось выше, (см. главу 1) отсутствуют характерные внешние проявления водородного растрескивания, такие как блиотеринг и расслоение металла. Наводогчзживание металла вследствие образов ния сероводорода при оастворении неметалличеоких вк^очений сульфида марганца в лабораторных условиях возможно только в кислых средах на очень загрязненных сульфидами сталях (гм. раздел 1.5). Исследования же образования водорода в щелочных средах применительно к исследуемому механизму, проведенные в УГНУ, как также отмечалось выше, показали, что сульфидные включения в растворах солей угольной кислоты при потенциалах, соответствующих регламентированным значениям потенциалов катодной защиты, химически инертны. Вместе с тем, вышеизложенное не исключает возможности локального воздействия водорода, возникающего при электрохимическом растворении стали в вершине корроштоо.. трещины вследствие водородной деполяризации пр« коррозионных процессах в кислых средах (например, сероводородсо-держащих).

Растрескивание металла трубопроводов вследствие водородного охрупчивания зарождается на участках стали с твердой мартенситной структурой, обычно в местах концентрации остаточных напряжений, возникающих при изготовлении труб. Как правило, коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом поверхностного дефекта в вершине сварного соединения [19]. Исследования коррозионных повреждений трубопроводов, изготовленных из стали марки 17Г2С и транспортирующих газ с примесью сероводорода (до 2%), показали, что общим для всех случаев разрушения сварных соединений является зарождение трещин

И нао'борот, снижение скорости роста трещины свидетельствует о проявлении в качестве основного механизма влияния среды — локального анодного растворения. На рис. 48.6 схематически представлено изменение скорости роста трещины va в результате наложения катодной поляризации в зависимости от исходной (без поляризации) скорости роста трещины L>B. Существует критическая скорость роста трещины ику, до которой поляризация не влияет на кинетику разрушения. При v > vKf преобладает механизм водородного охрупчивания, при v
В большинстве случаев коррозионного роста трещин процессы адсорбции, водородного охрупчивания и коррозионного растворения взаимосвязаны между собой и протекание одних обуславливает проявление других. Взаимосвязь этих процессов усложнена еще и влиянием структуры металла, вида напряженного состояния, внешних условий нагружения. Изучение этой взаимосвязи составляет предмет коррозионной механики разрушения — научного направления на стыке механики разрушения, металловедения и химического сопротивления материалов.

Такая система покрытий обеспечивает защиту стальной основы от водородного охрупчивания и коррозии и изнашивания гидро- или газоабразивным потоком. Двухслойное покрытие с наружным слоем, состоящим в основном из окиси алюминия, можно получать последовательным плазменным напылением с плавным переходом от А1 к А12 03 или окислением части нанесенного алюминиевого покрытия. При этом окисление можно проводить: твердым анодированием, анодным оксидированием, ионной имплантацией, окислением в тлеющем разряде и другими методами.

Исследования водородного охрупчивания и коррозионного растрескивания, можно проводить на малогабаритной установке (рис. 40). Установка позволяет изменять значения: напряжения в образце, температуры и скорости перемешивания электролита. Она проста в эксплуатации, невелика по размерам и позволяет проводить одновременно испытания четырех образцов с автоматической регистрацией их разрушения. Комплект из четырех установок монтируют на одной плите размером 700X400 мм.

Агрессивность буровых растворов увеличивается в присутствии сероводорода, особенно содержащегося вместе с кислородом и минеральными солями. Сероводород, попадающий в буровой раствор при разбуривании сероводородсодер-жащих месторождений, вызывает процессы коррозионного растрескивания под напряжением, водородного охрупчивания и общей коррозии. В присутствии

Более детальные отечественные исследования катодной поляризации титановых сплавов показали ее неоднозначное влияние на коррозионное растрескивание [ 27, 28]. Установлено, что наложение катодного тока при малых коэффициентах интенсивности напряжений К/ замедляет скорость развития трещин, а при больших К/ ускоряет ее. Повысить К/ удается с помощью ингибирующих добавок (окислителей). В первом случае при ^СС^^/^^НЕ контролирующим фактором растрескивания является анодный процесс, а во втором случае при К/^К^Н? коррозионное растрескивание идет по механизму водородного охрупчивания (К НЕ — критический коэффициент интенсивности напряжений при водородном потенциале). Для титановых сплавов ВТ5-1, ВТ20, ВТ23 и ТС6 КНЕ = \,Ь±2 Kscc (для прочных сталей КНЕ= 1,05-г 1,3 Kscc). Одновременно была выявлена особенность поведения титановых сплавов в растворах фторидов, где контролирующим фактором является водородное охрупчивание; растрескивание идет только при Kj>KH? и катодная поляризация ускоряет рост трещин [ 28].

В работах [61, 62] рассматривается возможность реализации при коррозионном растрескивании титановых сплавов обоих механизмов. При этом с увеличением коэффициента интенсивности напряжений доля анодного растворения (повышенное растравливание на полосах скольжения) уменьшается, а количество выделяющегося водорода и соответственно водородное охрупчивание увеличиваются. Близкие представления подробно развиты В. А. Маричевым [63, 64]. Он считает, что критическая скорость роста трещин — vKp и соответствующая ей критическая величина интенсивности напряжений, при которой происходит водородное охрупчивание (Кв ох), являются количественными показателями роли локального анодного растворения и водородного охрупчивания при росте трещин. При v/vKp и ^/>?в.ох преобладает механизм водородного охрупчивания. Эта точка зрения не содержит ограничений, связанных с составом сплава или электролита. Возможность ее распространения на различные материалы требует экспериментальной проверки.

Существенным доводом в пользу рекомбинационной теории является совпадение ряда металлов по возрастающим значениям водородного перенапряжения с расположением металлов по убывающей каталитической активности при рекомбинации водородных атомов:

Как показала М. М. Глейзер, повышенной восприимчивостью к действию ингибиторов коррозии обладают металлы, относящиеся по природе водородного перенапряжения к группе, характеризующейся либо замедленной рекомбинацией водородных атомов, либо соизмеримым торможением рекомбинации и разряда водородных ионов (Fe, Ni, Ti). Адсорбция ингибиторов коррозии на поверхности металлов этой группы происходит за счет как электростатических, так и специфических сил. Металлы этой группы, обладая неукомплектованными электронами внутренними Зс!-подоболочками, склонны также к повышенной хемосорб-ции ингибиторов на своей поверхности.

Некоторые исследователи (И. Тафель, Н. И. Кобозев и др.) придерживаются в вопросе водородного перенапряжения иных взглядоь. Они считают, что замедленной стадией является не разряд ионов водорода, а процесс молизации,т. е. пятая стадия процесса. Эта теория водородного перенапряжения, получившая название рекомбинационной, достаточно обоснована для некоторых металлов, в отношении которых наблюдается параллелизм между величиной перенапряжения на них водорода и каталитической их активностью по отношению реакции рекомбинации водородных атомов.

Эта реакция идет относительно медленно, и ее скорость определяет значение водородного перенапряжения на платине. Контролирующая, медленная стадия восстановления Н+ не всегда одинакова, она меняется в зависимости от природы металла, плотности тока и окружающей среды *.

** Названо по имени Тафеля [5а], который впервые предложил аналогичное уравнение для выражения водородного перенапряжения как функции плотности тока. — Примеч. авт.

Уменьшение абсолютного значения водородного перенапряжения для данного металла вызывается следующими факторами.

1. Повышение температуры (возрастает /0). Для металлов, корродирующих с выделением водорода, уменьшение водородного перенапряжения является одним из факторов, объясняющих увеличение коррозии с возрастанием температуры.

Эта же медленная стадия характерна для металлов с промежуточным значением водородного перенапряжения (никель, медь и т. д.) Для металлов с высоким водородным перенапряжением (например, ртуть, свинец) медленной стадией является разряд гидратированных ионов водорода:

* Увеличение водородного перенапряжения обычно приводит к уменьшению скорости коррозии стали в кислотах, но присутствие в стали серы или фосфора увеличивает скорость ее коррозии. Возможно, это происходит из-за низкого водородного перенапряжения на сульфидах или фосфидах железа, существующих в стали или образовавшихся на поверхности в результате реакции железа с H2S или соединениями фосфора в растворе. Возможно также [7], что эти соединения инициируют реакцию анодного растворения железа Fe -»• Fe+2 + 2ё (понижая активационную поляризацию) или изменяют соотношение площадей анодов и катодов. Решение этого вопроса требует дальнейших исследований.

стрескиванию, чем низкопрочные, но водород проникает и в их металлическую решетку, вызывая расслаивание и вспучивание *. Значения р", /0 и г\ при 1 мА/см2 для разряда иона Н+ приведены в табл. 4.1. * Заметим, что значения водородного перенапряжения существенно различаются для разных металлов. Они изменяются также в зависимости от концентрации электролита, хотя это влияние относительно невелико.

В кислой среде (рН < 4) диффузия кислорода перестает быть лимитирующим фактором и коррозионный процесс частично определяется скоростью выделения водорода, которая, в свою очередь, зависит от водородного перенапряжения на различных примесях и включениях, присутствующих в специальных сталях и чугунах. Скорость коррозии в этом диапазоне рН становится достаточно высокой, и анодная поляризация способствует этому (анодный контроль). Низкоуглеродистые стали корродируют в кислотах с меньшей скоростью, чем высокоуглеродистые, так как для цементита FegC характерно низкое водородное перенапряжение. Поэтому термическая обработка, влияющая на количество и размер частиц цементита, может значительно изменить скорость коррозии. Более того, холоднокатаная сталь корродирует в кислотах интенсивнее, чем отожженная или сталь со снятыми напряжениями, так как в результате механической обработки образуются участки мелкодисперсной структуры с низким водородным перенапряжением, содержащие углерод и азот. Обычно железо не используют в сильнокислой среде, поэтому для практических нужд важнее знать закономерности его коррозии в почвах и природных водах, чем в кислотах. Тем не менее существуют области




Рекомендуем ознакомиться:
Вследствие термической
Вследствие выгорания
Вследствие внутренних
Выполняется непосредственно
Вследствие взаимного
Вследствие уменьшения
Вследствие установки
Вследствие замедления
Вследствие зависимости
Вспомогательный двигатель
Вспомогательные коэффициенты
Вспомогательные механизмы
Вспомогательные сооружения
Вспомогательных цилиндров
Вспомогательных отделений
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки