Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Водородному охрупчиванию



чески. В связи с этим их определяют по отношению к стандартному водородному электроду, потенциал которого условно (так как в разных растворителях он разный и зависит от температуры) принят равным нулю при любых температурах и в любых растворителях.

Так как работа с водородным электродом связана с некоторыми трудностями, для измерения потенциалов в качестве электрода сравнения часто применяют каломельный электрод, устройство которого показано на рис. 11. Каломельный электрод отличается хорошей воспроизводимостью, большим постоянством потенциала и может быть легко изготовлен. Электродом этого полуэлемента является ртуть, электролитом — насыщенный раствор Hg2Cl2 и КС1 различных концентраций. Наиболее удобны в обращении электроды с насыщенным раствором КС1 во избежание возможного испарения воды. Потенциал насыщенного каломельного электрода по отношению к стандартному водородному электроду равен

Водородный электрод для измерения потенциала можно получить, погружая пластинку платинированной платины в раствор, насыщенный водородом при давлении I ат (рис. 3.2), или, что более удобно, измеряют потенциал с помощью стеклянного электрода, который также обратим по отношению к водородным ионам. Заметим, что потенциал электрода равен нулю, если и активность водородных ионов, и давление газообразного водорода (в атмосферах) равны единице. Это и есть стандартный водородный потенциал. Таким образом, потенциал полуэлемента для любого электрода равен э. д. с. элемента, где в качестве второго электрода использован стандартный водородный электрод. Потенциал полуэлемента для любого электрода, определенный таким образом, называется потенциалом по нормальному (стандартному) водородному электроду или по водородной шкале и обозначается Ен или ?н. в. э-**

На основании экспериментальных данных установлено, что естественный потенциал стальных трубопроводов в различных грунтах в большинстве случаев находится в пределах от минус 0,35В до минус 0,65В. Поэтому при расчете катодной защиты, если нет замеренных данных, естественный потенциал стали принимают равным минус 0,55В по отношению к водородному электроду сравнения.

Потенциал защищаемой конструкции при котором ток коррозии практически равен нулю, называют защитным потенциалом (Езащ.). Практически стальные подземные сооружения становятся защищёнными, если потенциал равен минус 0,55В по водородному электроду сравнения, или минус 0,85В по МСЭ. Эта величина принята как критерий минимального защитного потенциала (Ез.гшп). Однако указанный минимальный потенциал достаточен только в случае если отсутствует микробиологическая коррозия. При наличии в грунте СВБ (сульфатвосстанавливаюших бактерий) потенциал должен быть более отрицательным, равным минус 0,95В.

Протекторная защита. Принцип защиты катодной поляризацией с помощью протекторов состоит в образовании гальванической пары, катодом в которой служит защищаемое сооружение, а анодом — протектор (рис. 32). Металл протектора должен иметь электродный потенциал, более отрицательный, чем электродный потенциал защищаемого металла. Так, по отношению к железу или его •сплавам, имеющим электродный потенциал около минус 0,44 В по водородному электроду, в качестве протекторов можно использовать магний, обладающий электродным потенциалом минус 2,37 В, алюминий — минус 1,66 В, цинк — минус 0,76 В. При протекторной защите разрушается протектор.

Для этой цели обычно достаточно довести потенциал металла при катодной поляризации до (1,0-1,2) по водородному электроду.

UH — потенциал по отношению к нормальному водородному электроду (н. в. э.), мВ, В;

концентрацией иона металла с ?__ может быть получен равновесный потенциал, отнесенный к нормальному водородному электроду: t/H =- АО/(гР) = [АО°/(гР)] + (RT/(zf)] In CK&Z+ =

На рис. 20.17 показана схема подключения анодной защиты к установке сульфонирования [22]. Здесь по соображениям безопасности диапазон защитных потенциалов для нейтрализатора из хромоникеле-вой стали, который поочередно загружается едким натром (NaOH) и сульфокислотой (RSOsH), должен был выбираться с таким расчетом, чтобы обеспечивалась пассивность в обеих средах. Перекрытие обеих областей потенциалов однако обеспечивалось только в узком диапазоне около 250 мВ. Границы защитного потенциала (по водородному электроду 1/н) были установлены от 0,34 до 0,38 В. При этом обеспечивается также и защита трубопроводов, поскольку сопротивление поляризации пассивной стали и электропроводность сред велики. Параметр

Потенциал неполяризующегося насыщенного медносульфатного электрода по отношению к стандартному водородному электроду принят равным 0,3 в.

рода в металле приводит сначала к его молизации в замкнутых объемах и, как следствие, к водородному охрупчиванию, проявляющемуся в виде расслоений по ликвациям, образования пузырей (блистеринг), трещин во внутреннем объеме металла.

5. Заменять аустенитные сплавы на ферритные (например, марки 430 или низкоуглеродистую сталь с Сг и Мо — см. разд. 18,2). Однако ферритные сплавы могут подвергаться водородному охрупчиванию и вспучиванию в некоторых средах при контакте с более электроотрицательными металлами.

лочного типа, склонных в водородному охрупчиванию и растрескиванию.

В случае неингибированной среды МАСЕ величины критериев соответствуют расчетным данным теории замедленной рекомбинации, то есть происходит активный разряд ионов водорода на поверхности металла, приводящий к его наводорожива-нию и последующему водородному охрупчиванию. При введении в коррозионную среду соединений КСФ 1-КСФЗ значения критериев приближаются к расчетным данным теории замедленного разряда, что свидетельствует о преобладании молекулярного водорода у поверхности металла и его удалении из среды.

Конструкционные материалы должны обладать необходимым сочетанием прочностных и пластических свойств, сохраняющихся в широком интервале температур и давлений, высокой коррозионной стойкостью, в том числе стойкостью к водородному охрупчиванию, коррозионному растрескиванию и другим специфическим видам коррозионного разрушения, проявляющимся в условиях воздействия нефтегазовых сред.

Конструкционные материалы должны обладать необходимым сочетанием прочностных и пластических свойств, сохраняющихся в широком интервале температур и давлений, высокой коррозионной стойкостью, в том числе стойкостью к водородному охрупчиванию, коррозионному растрескиванию и другим специфическим видам коррозионного разрушения, проявляющимся в условиях воздействия нефтегазовых сред.

При изучении влияния алюминия на стойкость стали к водородному охрупчиванию [7] было показано, что при легировании стали марки 05ХГМ алюминием в количествах 0,05 и 0,07 % повысилась стойкость стали к СКР по сравнению к исходному составу соответственно в 2 раза (время до растрескивания 45 ч) и в 10 раз (время До растрескивания 220 ч) (рис. 11). Однако последующее увеличение содержания алюминия до 0,1 % привело к резкому уменьшению стойкости против СКР до значения, характерного для стали без добавления алюминия (время до растрескивания 25 ч). Оптимальное содержание ниобия равно 0,08 % (см. рис. 11). Титан не оказывает существенного влияния на повышение стойкости к СКР.

Как вододиспергируемые (И-ЗО-Д, И-З-Д, И-4-Д), так и углеводоро-дорастворимые ингибиторы (И-1-Д, И-21-Д) способствуют сохранению пластических свойств углеродистой стали в сероводородсодержащих средах. Так, при введении в коррозионную среду 200 мг/л ингибитора И-ЗО-Д пластические свойства стальной проволоки СВ-08 практически остаются на уровне значений, соответствующих исходному состоянию. Ингибитор И-З-Д также уменьшает склонность углеродистой стали к водородному охрупчиванию, причем более значительно в насыщенных сероводородом водных растворах с высокой (2 моль/л и более) концентрацией хлористого натрия.

Чувствительность к водородному охрупчиванию значительно зависит от качества стали. Поэтому часто наблюдается различная склонность к водородному охрупчиванию сталей, близких по химическому составу. Весьма важна форма неметаллических включений в стали, особенно сульфидов. При обычной выплавке стали сульфиды имеют пластинчатую форму, при дополнительной обработке синтетическим шлаком — округлую, эллипсообразную. Испытания трубной стали с одинаковым содержанием серы показали, что вредное влияние водорода на сталь с эллипсообразными сульфидами на 10-—40 % ниже, чем на сталь с пластинчатыми сульфидами. Значительно повышается стойкость стали к водородному охрупчиванию в растворах сероводорода при ее легировании редкоземельными элементами вследствие их влияния на облегчение молизации водорода, что затрудняет абсорбцию водорода металлом.

Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования: они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур; хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкристаллитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-

Значительно усиливаются процессы коррозии при введении в сырье водяного пара. Содержание в нефтях нафтеновых кислот способствует коррозии печных труб. Термодеструктивные процессы, вследствие дополнительного расщепления при высоких температурах, повышают степень агрессивного воздействия продуктов. Агрессивными компонентами продуктов термокаталитических процессов являются сероводород, хлористый водород, вода и др., образующиеся в результате каталитической деструкции. Они способствуют, в зависимости от марки стали, коррозионному растрескиванию, водородному охрупчиванию, обезуглероживанию.




Рекомендуем ознакомиться:
Вследствие трудности
Вследствие внедрения
Вследствие возможной
Вследствие возникновения
Вследствие указанного
Вследствие усталости
Выполняется несколько
Вследствие затухания
Вследствие значительного
Вспомогательный конденсатор
Выполняется преимущественно
Вспомогательные поверхности
Вспомогательных элементов
Вспомогательных механизмов
Вспомогательных параметров
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки