Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Зарождения усталостных



Около 80 % всех разрушений носят усталостный характер. Усталостный излом (рис. 47) состоит из зоны с более ровной и блестящей поверхностью, которая включает в себя очаг разрушения / — место зарождения разрушения и зону стабильного развития трещины 2; зона долома 3 — участка развития трещины, связанного с окончательным разрушением. Очаг разрушения обычно расположен вблизи поверхности. Поверхность, как наиболее нагруженная часть сечения (при изгибе, кручении), претерпевает микродеформацию, а затем в наклепанной зоне образуется подповерхностная трещина, которая постепенно развивается как вязкая.

межзеренное растрескивание); 2) ввод полученных матриц, представляющих собой дискретные аппроксимации исследуемых структур, в ЭВМ, рацбиение их но более крупные ячейки с размерами lk*J-k> J-k = 4, 6, 8, 10, 12, 16, 21, 32 при k = 1,...,8 и построение для каждого разбиения характеристической меры в виде равноячеечного распределения единиц Р (Р, = Mj/ ZMj, где Mj — количество единиц в 1-ой крупной ячейке, ?М — общее количество единиц в матрице крупных ячеек, i = 1,2,3,...,N, N — [64/.Ц]2}; 3) расчет для набора величин q из интервала [-30:40] традиционных МФ-харпктеристик — f(d)-спектров и Dq-спектров размерностей Реньи. Методика позволяет количественно оценивать степень однородности и скрытой упорядоченности структур (описываются соответственно характеристиками l(«)q-4fll И Д^о * P'1'l "~ ^ч <"•- Чем больше f^o, тем однороднее структура, и Чец больше Л4р, тем она упорядоченное. Установлено, что процессы структурной самоорганизации протекают в приповерхностном слое с опережением по сравнению с внутренними объемами материала, что согласуете»! с известным фактом наличия градиента плотности дислокаций в приповерхностном слое. Уменьшение относительной величины поверхностных микродефектов повышает однородность этих процессов и сглаживает их локализацию вблизи дефектов. При этом но Этапе мдкроупругой деформации повышается степень упрочнения и гомогенности приповерхностного слоя (рост ОПц и Oo.z). ° на этане зарождения разрушения появление и рост зародышей трещины происходит при больших напряжениях и деформациях (рост 0В и пластичности). VcTuHosjioiio, что относительному увеличению показателей прочности в 1,04..-1,14 раза, и пластичности в 1,2 раза соответствует относительное увеличение МФ-характеристик D4 (q = 1...40) и а.ш в 1,06 page. При нанесении покрытия из Не коэффициенты корреляции зависимости1 относительного увеличения О,щ и Оц.г и относительного изменения МФ-харпктеристик D^u и ОЦр Превышали 0,99. При нанесении Покрытий Ив Си с h/d < 0,0008...0,001 переходный слой Си-Мо снижает интенсивность процессов структурной самоорганизации в приповерхностном сдое Мо, и увеличению Gnu и СТ() а (Ов и 6 практически не изменяются.) соответствует увеличение D( (q > 2) и Д4о- После h/d 'г D.001 покрытие сиособствует большей пластической деформации материала приповерхностного слоя, и снижению Он и росту пластичности соответствует уменьшение D<(. Точки перелома зависимостей МФ-хорактеристик и механических свойств от h/d совпадают. Это согласуется с данными анализа связи фрактальной размерности зоны предразрушения с механическими свойствами [1]. В обезуглеро-женном поверхностном слое процессы деформации и разрушения протекают более однородно, а инициация разрушения начинается в нем при больших напряжениях и деформациях, по сравнению с материалом необезуглероженного поверхностного слоя. Изменению (ТПц на

нагружения. При МЦУ трещины возникают под действием сдвиговых напряжений аналогично тому, как это происходит в области МНЦУ, но зона зарождения разрушения не локализована, и наблюдается множественное растрескивание материала в направлении, перпендикулярном (или близком к перпендикулярному) к пакету а-плас-тин [73]. Поэтому в очаге наблюдается несколько фасеток раскалывания материала по пакету ос^-пластин. Растрескивание по поверхности может произойти уже при наработках в 20 % от общей долговечности, и его плотность с увеличением наработки возрастает [88]. Это обусловлено нелокализованным накоплением повреждений в материале при его перенапряжении, но после наработки в 60 % от долговечности увеличение плотности растрескиваний прекращается и идет интенсивное нарастание магистральной трещины во внутренних объемах материала. Сокращению периода до зарождения трещин способствует увеличение размеров зерен, что повышает неоднородность пластической деформации в локальных объемах металла и ускоряет образование магистральной трещины. При МЦУ усталостные бороздки величиной от 1 до 2-Ю"7 м/цикл формируются уже в очаге разрушения. С увеличением уровня напряжений шаг начальных бороздок может существенно возрастать.

Существование разброса в полученных данных о периоде роста трещин следует относить к неравномерному распределению напряженности диска по отверстиям. Например, в диске № 4 была выявлена всего одна трещина, но ее глубина составила 2,0 мм. В других же дисках с разной наработкой количество отверстий с трещинами колеблется от 4 до 12. О неравномерности нагруженное™ материала дисков по отверстиям свидетельствует и тот факт, что очаги зарождения разрушения располагаются на разном удалении от торца ступицы — от 1,5 до 13 мм.

Под действием внешнего давления предел выносливости, как правило, возрастает. Существуют устройства, позволяющие исследовать влияние гидростатического давления на усталость при осевом нагружении, изгибе с вращением, кручении i[208]. При гидростатическом давлении образец подвергается равномерному трехосному сжатию. Внешнее давление оказывает существенное влияние на механизм развития трещины с момента зарождения разрушения в области интенсивного скольжения.

Рис. 18. Распространение трещины^вследствие зарождения разрушения в критическом объеме в окрестности кончика трещины. а — изотропный материал; б — ортотропный материал.

Для понимания условий зарождения разрушения в материалах, армированных волокнами, оказывается крайне полезным иметь хотя бы качественное представление о распределениях напряжений и деформаций, возникающих под действием внешней приложенной нагрузки в структуре из близко расположенных параллельных волокон, погруженных в матрицу. Хотя волокна и матрица сами по себе могут рассматриваться как упругие изотропные и однородные тела, их модули Юнга, коэффициенты Пуассона и коэффициенты термического расширения весьма различны, поэтому, когда композит в целом подвергается изменению температуры или простому одноосному нагружению, в силу условий неразрывности на микроуровне возникают сложные напряженное и деформированное состояния. Исследователи, изучавшие композиты, давно это учитывали, однако уточненные решения были получены численными методами лишь после появления мощных вычислительных машин (например, [16]).

Закономерно изменяется строение излома в зависимости от режима термической обработки (рис. 9). Для алюминиевых •сплавов АК6, 01911, В93, ВАД23 и других в зонной стадии старения разрушение проходит с высокой степенью локальной пластической деформации, что выражается наличием на изломах однократного нагружения преимущественно крупноямочного рельефа. Центрами зарождения разрушения являются в основном крупные частицы избыточных фаз. Изломы исследованных материалов различаются главным образом размерами ямок и

строением их стенок. Разрушение полностью внутризеренное. В начальной стадии фазового старения микростроение излома смешанное, отражающее неоднородность структуры: крупно- и мелкоямочное. При режиме старения на максимальную прочность излом в основном мелкоямочный, что свидетельствует об ограниченной способности к локальной пластической деформации вследствие большого количества локальных центров разрушения. Центрами зарождения разрушения являются не только частицы избыточных, но упрочняющих фаз. Типичным для области фазового старения является субзеренное разрушение (рис. 10), которое, как правило, инициируется интенсивным распадом твердого раствора по границам субзерен, что наблюдалось, например, в сплавах ВАД23 и В93 с цирконием. По сравнению с фазовым старением на максимальную прочность в стадии коагуляционного старения локальная пластичность при разрушении несколько увеличивается. Микрорельеф излома представляет собой в основном мелкие ямки значительной глубины и некоторое количество крупных ямок; субзеренное разрушение практически исчезает. В этой стадии старения при относительно небольшом увеличении удлинения активнее проявляется способность материала к сосредоточенной деформации. Некоторое исключение представляют собой листы из алюминиевого сплава ВАД23, в которых при старении на максимальную прочность (160°С; 12 ч) разрушение внутризеренное, с формированием мелкоямочного рельефа, работа разрушения образца с трещиной ату=0,09 МДж/м2, а при перестаривании (200°С; 10 ч) разрушение практически полностью мелкоямочное, межзе-ренное, ату = 0,021 МДж/м2.

Рис. 97. Общий вид разрыва с очагом зарождения разрушения

Таким образом, во всех проанализированных случаях в зоне зарождения разрушения имело место неблагоприятное сочетание геометрического концентратора напряжений и участков с пониженными пластичностью и коррозионной стойкостью.

2.1. Период зарождения усталостных трещин................................. 21

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу «Конструкционная прочность машиностроительных материалов» на факультете «Машиностроительные технологии» (кафедра «Материаловедение») и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные нагрузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс усталости связан с постепенным накоплением и взаимодействием дефектов кристаллической решетки (вакансий, междоузельных атомов, дислокаций и дискли-иаций, двойников, границ блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления структурных повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.

Рассмотрим теперь стадийность процессов пластической деформации и разрушения в условиях циклического деформирования. В дальнейшем мы будем рассматривать закономерности усталостного разрушения в основном в области многоцикловой усталости, хотя при рассмотрении многих аспектов проблемы мпогоцикловой и малоцикловой усталости бывает трудно разделить. Обобщенная диаграмма многоциюювой усталости, представленная на рис. 7, отражает основные закономерности накопления повреждаемости в основных периодах и стадиях процесса усталостного разрушения металлических материалов, имеющих на кривой статического растяжения физический предел текучести. В диапазоне циклических напряжений от стк до стти весь процесс усталости в зависимости от числа циклов нагружения можно разделить на два основных периода (по аналогии со стадийностью процессов пластической деформации и разрушения при статическом нагружении): зарождения усталостных трещин и распространения усталостных трещин (заштрихованная область на рис. 7).

Период зарождения усталостных трещин, как и в случае статического деформирования, можно разделить на три основные стадии:

Описанные выше стадии периода зарождения усталостных трещин наиболее характерны для ОЦК - металлов, имеющих физический предел текучести при статическом растяжении, и металлов и сплавов с другими типами кристаллических решеток, у которых физический предел текучести может проявляться (известно, что физический предел текучести наблюдается при определенных условиях практически у всех металлов и сплавов с любым типом кристаллической решетки).

Эти стадии хорошо выявляются в условиях нагружения с постоянной общей (упругой и пластической) амплитудой деформации за цикл. В случае испытаний только с постоянной амплитудой пластической деформации за цикл металлических материалов, не имеющих физического предела текучести, период зарождения усталостных трещин может сразу начинаться со стадии деформационного упрочнения или разупрочнения. Кроме того, для выяв-

2.1. Период зарождения усталостных трещин 2.1.1. Стадия циклической микротеку чести

Как уже отмечалось выше, стадии циклической микротекучести и циклической текучести характерны для металлов и сплавов, имеющих физический предел текучести, и их можно изучать при определенной методике усталостных испытаний. Для металлических материалов, не имеющих физического предела текучести, усталостный процесс начинается с кратковременной стадии циклической микротекучести (которая часто протекает в процессе вы-вода испытательной машина на заданную амплитуду нагружсния), а затем следует стадия циклического деформационного упрочнения (разупрочнения). Эту стадию следует рассматривать как конкуренцию двух кинетических процессов - пластической деформации, приводящей к деформационному упрочнению, и разрушения (по терминологии И.А. Одинга - упрочнения и разупрочнения). Поэтому в области циклического упрочнения (3-я стадия в периоде зарождения усталостных трещин, рис. 7) пунктирной линией отмечено геометрическое место точек, соответствующих началу появления поверхностных субмикротрещин размером 1 - 3 мкм. Склонность металлических материалов к циклическому упрочнению или разупрочнению определяется отношением предела прочности к условному пределу текучести. Известно, что все материалы с ов/а0,2 ^ 1,2 разупрочняются при циклическом деформировании,

На первых двух стадиях периода зарождения усталостных трещин, хотя и происходят изменения в структурном состоянии материалов, однако механические свойства при этом практически не изменяются. На стадии же циклического упрочнения (разупрочнения) происходит интенсивное изменение механических свойств до определенного числа циклов, которое зависит от амплитуды приложенной нагрузки, после чего достигается стабилизация этих свойств или их значения изменяются мало. Для исследований изменений механических свойств в процессе циклического деформирования используют петлю механического гистерезиса, форма и площадь которой меняются в процессе нагружения. Характерные параметры петли гистерезиса изображены на рис. 5,а, наиболее важные методики испытаний на усталость схематически показаны на рис. 12. Наиболее часто применяемый в настоящее время метод испытания с контролируемым напряжением, при котором в образце всего испытания поддерживается постоянство двух граничных напряжений цикла, показан на рис. 12,а. Две приведенные на этом рисунке петли гистерезиса отражают реакцию материала на внешнюю нагрузку в два различных момента времени. При этом методе испытания достаточно определять лишь изменение ширины петли гистерезиса, которая, например, уменьшается для циклически упрочняемых материалов и растет для циклически разупрочняющихся. При испытаниях на усталость с предварительно заданными границами суммарной деформации, помимо измерения амплитуды пластической деформации, следует также определять изменение амплитуды напряжения цикла (рис. 12,6). В фундаментальных металловедческих исследованиях предпочитают применять испытания с постоянной амплитудой пластической деформации за цикл (рис. 12, в). Изменение механических свойств при этом проявляется в изменении

В условиях циклического деформирования могут наблюдаться те же механизмы зарождения трещин, которые свойственны и другим видам нагру-жения: механизм слияния дислокаций, механизм заторможенного сдвига, механизм вскрытия полосы скольжения, механизм Коттрелла - зарождение микротрещин на пересечении полос скольжения, образование субмикротре-щин на краю субграницы, образование трещин при взаимодействии двойников, возникновение микротрещин на поверхностях раздела. Во многих случаях невозможно провести четкую грань между различными вариантами и исключить еще серии механизмов, не укладывающихся ни в один из названных. На рис. 22 - 25 представлены некоторые механизмы зарождения усталостных трещин на стадии деформационного упрочнения. В сплавах железа зарождение усталостных микротрещин часто происходит в устойчивых полосах скольжения по сдвиговому механизму (рис. 26).

периоде усталости (а) и фрактографическая картина зарождения усталостных




Рекомендуем ознакомиться:
Заведующему котельной
Завершения переходного
Зависящие соответственно
Зависимая переменная
Зависимостью полученной
Заданными условиями
Зависимость абсолютной
Зависимость безразмерной
Зависимость динамической
Заданного диапазона
Зависимость достаточно
Зависимость характера
Зависимость изменений
Зависимость извлечения
Зависимость коэрцитивной
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки